IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v119y2024i546p1592-1603.html
   My bibliography  Save this article

Censored Interquantile Regression Model with Time-Dependent Covariates

Author

Listed:
  • Chi Wing Chu
  • Tony Sit

Abstract

Conventionally, censored quantile regression stipulates a specific, pointwise conditional quantile of the survival time given covariates. Despite its model flexibility and straightforward interpretation, the pointwise formulation oftentimes yields rather unstable estimates across neighboring quantile levels with large variances. In view of this phenomenon, we propose a new class of quantile-based regression models with time-dependent covariates for censored data. The models proposed aim to capture the relationship between the failure time and the covariate processes of a target population that falls within a specific quantile bracket. The pooling of information within a homogeneous neighborhood facilitates more efficient estimates hence, more consistent conclusion on statistical significances of the variables concerned. This new formulation can also be regarded as a generalization of the accelerated failure time model for survival data in the sense that it relaxes the assumption of global homogeneity for the error at all quantile levels. By introducing a class of weighted rank-based estimation procedure, our framework allows a quantile-based inference on the covariate effect with a less restrictive set of assumptions. Numerical studies demonstrate that the proposed estimator outperforms existing alternatives under various settings in terms of smaller empirical biases and standard deviations. A perturbation-based resampling method is also developed to reconcile the asymptotic distribution of the parameter estimates. Finally, consistency and weak convergence of the proposed estimator are established via empirical process theory. Supplementary materials for this article are available online.

Suggested Citation

  • Chi Wing Chu & Tony Sit, 2024. "Censored Interquantile Regression Model with Time-Dependent Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 119(546), pages 1592-1603, April.
  • Handle: RePEc:taf:jnlasa:v:119:y:2024:i:546:p:1592-1603
    DOI: 10.1080/01621459.2023.2208389
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2023.2208389
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2023.2208389?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:119:y:2024:i:546:p:1592-1603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.