IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v119y2024i546p1500-1512.html
   My bibliography  Save this article

Sparse Convoluted Rank Regression in High Dimensions

Author

Listed:
  • Le Zhou
  • Boxiang Wang
  • Hui Zou

Abstract

Wang et al. studied the high-dimensional sparse penalized rank regression and established its nice theoretical properties. Compared with the least squares, rank regression can have a substantial gain in estimation efficiency while maintaining a minimal relative efficiency of 86.4%. However, the computation of penalized rank regression can be very challenging for high-dimensional data, due to the highly nonsmooth rank regression loss. In this work we view the rank regression loss as a nonsmooth empirical counterpart of a population level quantity, and a smooth empirical counterpart is derived by substituting a kernel density estimator for the true distribution in the expectation calculation. This view leads to the convoluted rank regression loss and consequently the sparse penalized convoluted rank regression (CRR) for high-dimensional data. We prove some interesting asymptotic properties of CRR. Under the same key assumptions for sparse rank regression, we establish the rate of convergence of the l1-penalized CRR for a tuning free penalization parameter and prove the strong oracle property of the folded concave penalized CRR. We further propose a high-dimensional Bayesian information criterion for selecting the penalization parameter in folded concave penalized CRR and prove its selection consistency. We derive an efficient algorithm for solving sparse convoluted rank regression that scales well with high dimensions. Numerical examples demonstrate the promising performance of the sparse convoluted rank regression over the sparse rank regression. Our theoretical and numerical results suggest that sparse convoluted rank regression enjoys the best of both sparse least squares regression and sparse rank regression. Supplementary materials for this article are available online.

Suggested Citation

  • Le Zhou & Boxiang Wang & Hui Zou, 2024. "Sparse Convoluted Rank Regression in High Dimensions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 119(546), pages 1500-1512, April.
  • Handle: RePEc:taf:jnlasa:v:119:y:2024:i:546:p:1500-1512
    DOI: 10.1080/01621459.2023.2202433
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2023.2202433
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2023.2202433?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:119:y:2024:i:546:p:1500-1512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.