IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v119y2024i546p1136-1154.html
   My bibliography  Save this article

A Two-Sample Conditional Distribution Test Using Conformal Prediction and Weighted Rank Sum

Author

Listed:
  • Xiaoyu Hu
  • Jing Lei

Abstract

We consider the problem of testing the equality of conditional distributions of a response variable given a vector of covariates between two populations. Such a hypothesis testing problem can be motivated from various machine learning and statistical inference scenarios, including transfer learning and causal predictive inference. We develop a nonparametric test procedure inspired from the conformal prediction framework. The construction of our test statistic combines recent developments in conformal prediction with a novel choice of conformity score, resulting in a weighted rank-sum test statistic that is valid and powerful under general settings. To our knowledge, this is the first successful attempt of using conformal prediction for testing statistical hypotheses beyond exchangeability. Our method is suitable for modern machine learning scenarios where the data has high dimensionality and large sample sizes, and can be effectively combined with existing classification algorithms to find good conformity score functions. The performance of the proposed method is demonstrated in various numerical examples. Supplementary materials for this article are available online.

Suggested Citation

  • Xiaoyu Hu & Jing Lei, 2024. "A Two-Sample Conditional Distribution Test Using Conformal Prediction and Weighted Rank Sum," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 119(546), pages 1136-1154, April.
  • Handle: RePEc:taf:jnlasa:v:119:y:2024:i:546:p:1136-1154
    DOI: 10.1080/01621459.2023.2177165
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2023.2177165
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2023.2177165?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:119:y:2024:i:546:p:1136-1154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.