Author
Listed:
- Wenzhuo Zhou
- Ruoqing Zhu
- Annie Qu
Abstract
Recent advances in mobile health (mHealth) technology provide an effective way to monitor individuals’ health statuses and deliver just-in-time personalized interventions. However, the practical use of mHealth technology raises unique challenges to existing methodologies on learning an optimal dynamic treatment regime. Many mHealth applications involve decision-making with large numbers of intervention options and under an infinite time horizon setting where the number of decision stages diverges to infinity. In addition, temporary medication shortages may cause optimal treatments to be unavailable, while it is unclear what alternatives can be used. To address these challenges, we propose a Proximal Temporal consistency Learning (pT-Learning) framework to estimate an optimal regime that is adaptively adjusted between deterministic and stochastic sparse policy models. The resulting minimax estimator avoids the double sampling issue in the existing algorithms. It can be further simplified and can easily incorporate off-policy data without mismatched distribution corrections. We study theoretical properties of the sparse policy and establish finite-sample bounds on the excess risk and performance error. The proposed method is provided in our proximalDTR package and is evaluated through extensive simulation studies and the OhioT1DM mHealth dataset. Supplementary materials for this article are available online.
Suggested Citation
Wenzhuo Zhou & Ruoqing Zhu & Annie Qu, 2024.
"Estimating Optimal Infinite Horizon Dynamic Treatment Regimes via pT-Learning,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 119(545), pages 625-638, January.
Handle:
RePEc:taf:jnlasa:v:119:y:2024:i:545:p:625-638
DOI: 10.1080/01621459.2022.2138760
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:119:y:2024:i:545:p:625-638. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.