IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v119y2024i545p525-537.html
   My bibliography  Save this article

Large Scale Prediction with Decision Trees

Author

Listed:
  • Jason M. Klusowski
  • Peter M. Tian

Abstract

This article shows that decision trees constructed with Classification and Regression Trees (CART) and C4.5 methodology are consistent for regression and classification tasks, even when the number of predictor variables grows sub-exponentially with the sample size, under natural 0-norm and 1-norm sparsity constraints. The theory applies to a wide range of models, including (ordinary or logistic) additive regression models with component functions that are continuous, of bounded variation, or, more generally, Borel measurable. Consistency holds for arbitrary joint distributions of the predictor variables, thereby accommodating continuous, discrete, and/or dependent data. Finally, we show that these qualitative properties of individual trees are inherited by Breiman’s random forests. A key step in the analysis is the establishment of an oracle inequality, which allows for a precise characterization of the goodness of fit and complexity tradeoff for a mis-specified model. Supplementary materials for this article are available online.

Suggested Citation

  • Jason M. Klusowski & Peter M. Tian, 2024. "Large Scale Prediction with Decision Trees," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 119(545), pages 525-537, January.
  • Handle: RePEc:taf:jnlasa:v:119:y:2024:i:545:p:525-537
    DOI: 10.1080/01621459.2022.2126782
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2022.2126782
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2022.2126782?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mustafa Karaköse & Özgün Yücel, 2024. "Predictive Modeling of the Hydrate Formation Temperature in Highly Pressurized Natural Gas Pipelines," Energies, MDPI, vol. 17(21), pages 1-12, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:119:y:2024:i:545:p:525-537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.