IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v118y2023i544p2370-2382.html
   My bibliography  Save this article

Toward Better Practice of Covariate Adjustment in Analyzing Randomized Clinical Trials

Author

Listed:
  • Ting Ye
  • Jun Shao
  • Yanyao Yi
  • Qingyuan Zhao

Abstract

In randomized clinical trials, adjustments for baseline covariates at both design and analysis stages are highly encouraged by regulatory agencies. A recent trend is to use a model-assisted approach for covariate adjustment to gain credibility and efficiency while producing asymptotically valid inference even when the model is incorrect. In this article we present three considerations for better practice when model-assisted inference is applied to adjust for covariates under simple or covariate-adaptive randomized trials: (a) guaranteed efficiency gain: a model-assisted method should often gain but never hurt efficiency; (b) wide applicability: a valid procedure should be applicable, and preferably universally applicable, to all commonly used randomization schemes; (c) robust standard error: variance estimation should be robust to model misspecification and heteroscedasticity. To achieve these, we recommend a model-assisted estimator under an analysis of heterogeneous covariance working model that includes all covariates used in randomization. Our conclusions are based on an asymptotic theory that provides a clear picture of how covariate-adaptive randomization and regression adjustment alter statistical efficiency. Our theory is more general than the existing ones in terms of studying arbitrary functions of response means (including linear contrasts, ratios, and odds ratios), multiple arms, guaranteed efficiency gain, optimality, and universal applicability. Supplementary materials for this article are available online.

Suggested Citation

  • Ting Ye & Jun Shao & Yanyao Yi & Qingyuan Zhao, 2023. "Toward Better Practice of Covariate Adjustment in Analyzing Randomized Clinical Trials," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(544), pages 2370-2382, October.
  • Handle: RePEc:taf:jnlasa:v:118:y:2023:i:544:p:2370-2382
    DOI: 10.1080/01621459.2022.2049278
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2022.2049278
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2022.2049278?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Anqi & Ding, Peng, 2024. "No star is good news: A unified look at rerandomization based on p-values from covariate balance tests," Journal of Econometrics, Elsevier, vol. 241(1).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:118:y:2023:i:544:p:2370-2382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.