IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v118y2023i541p97-108.html
   My bibliography  Save this article

Ultra-High Dimensional Quantile Regression for Longitudinal Data: An Application to Blood Pressure Analysis

Author

Listed:
  • Tianhai Zu
  • Heng Lian
  • Brittany Green
  • Yan Yu

Abstract

Despite major advances in research and treatment, identifying important genotype risk factors for high blood pressure remains challenging. Traditional genome-wide association studies (GWAS) focus on one single nucleotide polymorphism (SNP) at a time. We aim to select among over half a million SNPs along with time-varying phenotype variables via simultaneous modeling and variable selection, focusing on the most dangerous blood pressure levels at high quantiles. Taking advantage of rich data from a large-scale public health study, we develop and apply a novel quantile penalized generalized estimating equations (GEE) approach, incorporating several key aspects including ultra-high dimensional genetic SNPs, the longitudinal nature of blood pressure measurements, time-varying covariates, and conditional high quantiles of blood pressure. Importantly, we identify interesting new SNPs for high blood pressure. Besides, we find blood pressure levels are likely heterogeneous, where the important risk factors identified differ among quantiles. This comprehensive picture of conditional quantiles of blood pressure can allow more insights and targeted treatments. We provide an efficient computational algorithm and prove consistency, asymptotic normality, and the oracle property for the quantile penalized GEE estimators with ultra-high dimensional predictors. Moreover, we establish model-selection consistency for high-dimensional BIC. Simulation studies show the promise of the proposed approach. Supplementary materials for this article are available online.

Suggested Citation

  • Tianhai Zu & Heng Lian & Brittany Green & Yan Yu, 2023. "Ultra-High Dimensional Quantile Regression for Longitudinal Data: An Application to Blood Pressure Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(541), pages 97-108, January.
  • Handle: RePEc:taf:jnlasa:v:118:y:2023:i:541:p:97-108
    DOI: 10.1080/01621459.2022.2128806
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2022.2128806
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2022.2128806?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Park, Seyoung & Kim, Hyunjin & Lee, Eun Ryung, 2023. "Regional quantile regression for multiple responses," Computational Statistics & Data Analysis, Elsevier, vol. 188(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:118:y:2023:i:541:p:97-108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.