IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v117y2022i540p2074-2085.html
   My bibliography  Save this article

Network Functional Varying Coefficient Model

Author

Listed:
  • Xuening Zhu
  • Zhanrui Cai
  • Yanyuan Ma

Abstract

We consider functional responses with network dependence observed for each individual at irregular time points. To model both the interindividual dependence and within-individual dynamic correlation, we propose a network functional varying coefficient (NFVC) model. The response of each individual is characterized by a linear combination of responses from its connected nodes and its exogenous covariates. All the model coefficients are allowed to be time dependent. The NFVC model adds to the richness of both the classical network autoregression model and the functional regression models. To overcome the complexity caused by the network interdependence, we devise a special nonparametric least-squares-type estimator, which is feasible when the responses are observed at irregular time points for different individuals. The estimator takes advantage of the sparsity of the network structure to reduce the computational burden. To further conduct the functional principal component analysis, a novel within-individual covariance function estimation method is proposed and studied. Theoretical properties of our estimators, which involve techniques related to empirical processes, nonparametrics, functional data analysis and various concentration inequalities, are analyzed. We analyze a social network dataset to illustrate the powerfulness of the proposed procedure.

Suggested Citation

  • Xuening Zhu & Zhanrui Cai & Yanyuan Ma, 2022. "Network Functional Varying Coefficient Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(540), pages 2074-2085, October.
  • Handle: RePEc:taf:jnlasa:v:117:y:2022:i:540:p:2074-2085
    DOI: 10.1080/01621459.2021.1901718
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2021.1901718
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2021.1901718?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tadao Hoshino, 2024. "Functional Spatial Autoregressive Models," Papers 2402.14763, arXiv.org, revised Oct 2024.
    2. Ren, Yimeng & Li, Zhe & Zhu, Xuening & Gao, Yuan & Wang, Hansheng, 2024. "Distributed estimation and inference for spatial autoregression model with large scale networks," Journal of Econometrics, Elsevier, vol. 238(2).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:117:y:2022:i:540:p:2074-2085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.