IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v117y2022i540p1875-1886.html
   My bibliography  Save this article

Fast, Optimal, and Targeted Predictions Using Parameterized Decision Analysis

Author

Listed:
  • Daniel R. Kowal

Abstract

Prediction is critical for decision-making under uncertainty and lends validity to statistical inference. With targeted prediction, the goal is to optimize predictions for specific decision tasks of interest, which we represent via functionals. Although classical decision analysis extracts predictions from a Bayesian model, these predictions are often difficult to interpret and slow to compute. Instead, we design a class of parameterized actions for Bayesian decision analysis that produce optimal, scalable, and simple targeted predictions. For a wide variety of action parameterizations and loss functions—including linear actions with sparsity constraints for targeted variable selection—we derive a convenient representation of the optimal targeted prediction that yields efficient and interpretable solutions. Customized out-of-sample predictive metrics are developed to evaluate and compare among targeted predictors. Through careful use of the posterior predictive distribution, we introduce a procedure that identifies a set of near-optimal, or acceptable targeted predictors, which provide unique insights into the features and level of complexity needed for accurate targeted prediction. Simulations demonstrate excellent prediction, estimation, and variable selection capabilities. Targeted predictions are constructed for physical activity (PA) data from the National Health and Nutrition Examination Survey to better predict and understand the characteristics of intraday PA. Supplementary materials for this article are available online.

Suggested Citation

  • Daniel R. Kowal, 2022. "Fast, Optimal, and Targeted Predictions Using Parameterized Decision Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(540), pages 1875-1886, October.
  • Handle: RePEc:taf:jnlasa:v:117:y:2022:i:540:p:1875-1886
    DOI: 10.1080/01621459.2021.1891926
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2021.1891926
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2021.1891926?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Noel Cressie, 2023. "Decisions, decisions, decisions in an uncertain environment," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:117:y:2022:i:540:p:1875-1886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.