IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v117y2022i540p1787-1808.html
   My bibliography  Save this article

Deep Compositional Spatial Models

Author

Listed:
  • Andrew Zammit-Mangion
  • Tin Lok James Ng
  • Quan Vu
  • Maurizio Filippone

Abstract

Spatial processes with nonstationary and anisotropic covariance structure are often used when modeling, analyzing, and predicting complex environmental phenomena. Such processes may often be expressed as ones that have stationary and isotropic covariance structure on a warped spatial domain. However, the warping function is generally difficult to fit and not constrained to be injective, often resulting in “space-folding.” Here, we propose modeling an injective warping function through a composition of multiple elemental injective functions in a deep-learning framework. We consider two cases; first, when these functions are known up to some weights that need to be estimated, and, second, when the weights in each layer are random. Inspired by recent methodological and technological advances in deep learning and deep Gaussian processes, we employ approximate Bayesian methods to make inference with these models using graphics processing units. Through simulation studies in one and two dimensions we show that the deep compositional spatial models are quick to fit, and are able to provide better predictions and uncertainty quantification than other deep stochastic models of similar complexity. We also show their remarkable capacity to model nonstationary, anisotropic spatial data using radiances from the MODIS instrument aboard the Aqua satellite.

Suggested Citation

  • Andrew Zammit-Mangion & Tin Lok James Ng & Quan Vu & Maurizio Filippone, 2022. "Deep Compositional Spatial Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(540), pages 1787-1808, October.
  • Handle: RePEc:taf:jnlasa:v:117:y:2022:i:540:p:1787-1808
    DOI: 10.1080/01621459.2021.1887741
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2021.1887741
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2021.1887741?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joshua S. North & Christopher K. Wikle & Erin M. Schliep, 2023. "A Review of Data‐Driven Discovery for Dynamic Systems," International Statistical Review, International Statistical Institute, vol. 91(3), pages 464-492, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:117:y:2022:i:540:p:1787-1808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.