IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v117y2022i539p1215-1227.html
   My bibliography  Save this article

Random Partition Models for Microclustering Tasks

Author

Listed:
  • Brenda Betancourt
  • Giacomo Zanella
  • Rebecca C. Steorts

Abstract

Traditional Bayesian random partition models assume that the size of each cluster grows linearly with the number of data points. While this is appealing for some applications, this assumption is not appropriate for other tasks such as entity resolution (ER), modeling of sparse networks, and DNA sequencing tasks. Such applications require models that yield clusters whose sizes grow sublinearly with the total number of data points—the microclustering property. Motivated by these issues, we propose a general class of random partition models that satisfy the microclustering property with well-characterized theoretical properties. Our proposed models overcome major limitations in the existing literature on microclustering models, namely a lack of interpretability, identifiability, and full characterization of model asymptotic properties. Crucially, we drop the classical assumption of having an exchangeable sequence of data points, and instead assume an exchangeable sequence of clusters. In addition, our framework provides flexibility in terms of the prior distribution of cluster sizes, computational tractability, and applicability to a large number of microclustering tasks. We establish theoretical properties of the resulting class of priors, where we characterize the asymptotic behavior of the number of clusters and of the proportion of clusters of a given size. Our framework allows a simple and efficient Markov chain Monte Carlo algorithm to perform statistical inference. We illustrate our proposed methodology on the microclustering task of ER, where we provide a simulation study and real experiments on survey panel data.

Suggested Citation

  • Brenda Betancourt & Giacomo Zanella & Rebecca C. Steorts, 2022. "Random Partition Models for Microclustering Tasks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(539), pages 1215-1227, September.
  • Handle: RePEc:taf:jnlasa:v:117:y:2022:i:539:p:1215-1227
    DOI: 10.1080/01621459.2020.1841647
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2020.1841647
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2020.1841647?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Creal, Drew & Kim, Jaeho, 2024. "Bayesian estimation of cluster covariance matrices of unknown form," Journal of Econometrics, Elsevier, vol. 241(1).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:117:y:2022:i:539:p:1215-1227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.