IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v117y2022i539p1200-1214.html
   My bibliography  Save this article

Markov Neighborhood Regression for High-Dimensional Inference

Author

Listed:
  • Faming Liang
  • Jingnan Xue
  • Bochao Jia

Abstract

This article proposes an innovative method for constructing confidence intervals and assessing p-values in statistical inference for high-dimensional linear models. The proposed method has successfully broken the high-dimensional inference problem into a series of low-dimensional inference problems: For each regression coefficient βi, the confidence interval and p-value are computed by regressing on a subset of variables selected according to the conditional independence relations between the corresponding variable Xi and other variables. Since the subset of variables forms a Markov neighborhood of Xi in the Markov network formed by all the variables X1,X2,…,Xp, the proposed method is coined as Markov neighborhood regression (MNR). The proposed method is tested on high-dimensional linear, logistic, and Cox regression. The numerical results indicate that the proposed method significantly outperforms the existing ones. Based on the MNR, a method of learning causal structures for high-dimensional linear models is proposed and applied to identification of drug sensitive genes and cancer driver genes. The idea of using conditional independence relations for dimension reduction is general and potentially can be extended to other high-dimensional or big data problems as well. Supplementary materials for this article are available online.

Suggested Citation

  • Faming Liang & Jingnan Xue & Bochao Jia, 2022. "Markov Neighborhood Regression for High-Dimensional Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(539), pages 1200-1214, September.
  • Handle: RePEc:taf:jnlasa:v:117:y:2022:i:539:p:1200-1214
    DOI: 10.1080/01621459.2020.1841646
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2020.1841646
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2020.1841646?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shengfei Tang & Yanmei Shi & Qi Zhang, 2023. "Bias-Corrected Inference of High-Dimensional Generalized Linear Models," Mathematics, MDPI, vol. 11(4), pages 1-14, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:117:y:2022:i:539:p:1200-1214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.