IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v117y2022i538p969-982.html
   My bibliography  Save this article

Highly Scalable Bayesian Geostatistical Modeling via Meshed Gaussian Processes on Partitioned Domains

Author

Listed:
  • Michele Peruzzi
  • Sudipto Banerjee
  • Andrew O. Finley

Abstract

We introduce a class of scalable Bayesian hierarchical models for the analysis of massive geostatistical datasets. The underlying idea combines ideas on high-dimensional geostatistics by partitioning the spatial domain and modeling the regions in the partition using a sparsity-inducing directed acyclic graph (DAG). We extend the model over the DAG to a well-defined spatial process, which we call the meshed Gaussian process (MGP). A major contribution is the development of an MGPs on tessellated domains, accompanied by a Gibbs sampler for the efficient recovery of spatial random effects. In particular, the cubic MGP (Q-MGP) can harness high-performance computing resources by executing all large-scale operations in parallel within the Gibbs sampler, improving mixing and computing time compared to sequential updating schemes. Unlike some existing models for large spatial data, a Q-MGP facilitates massive caching of expensive matrix operations, making it particularly apt in dealing with spatiotemporal remote-sensing data. We compare Q-MGPs with large synthetic and real world data against state-of-the-art methods. We also illustrate using Normalized Difference Vegetation Index data from the Serengeti park region to recover latent multivariate spatiotemporal random effects at millions of locations. The source code is available at github.com/mkln/meshgp. Supplementary materials for this article are available online.

Suggested Citation

  • Michele Peruzzi & Sudipto Banerjee & Andrew O. Finley, 2022. "Highly Scalable Bayesian Geostatistical Modeling via Meshed Gaussian Processes on Partitioned Domains," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(538), pages 969-982, April.
  • Handle: RePEc:taf:jnlasa:v:117:y:2022:i:538:p:969-982
    DOI: 10.1080/01621459.2020.1833889
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2020.1833889
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2020.1833889?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Si Cheng & Bledar A. Konomi & Georgios Karagiannis & Emily L. Kang, 2024. "Recursive nearest neighbor co‐kriging models for big multi‐fidelity spatial data sets," Environmetrics, John Wiley & Sons, Ltd., vol. 35(4), June.
    2. Xiaotian Zheng & Athanasios Kottas & Bruno Sansó, 2023. "Bayesian geostatistical modeling for discrete‐valued processes," Environmetrics, John Wiley & Sons, Ltd., vol. 34(7), November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:117:y:2022:i:538:p:969-982. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.