IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v117y2022i538p951-968.html
   My bibliography  Save this article

Hierarchical Community Detection by Recursive Partitioning

Author

Listed:
  • Tianxi Li
  • Lihua Lei
  • Sharmodeep Bhattacharyya
  • Koen Van den Berge
  • Purnamrita Sarkar
  • Peter J. Bickel
  • Elizaveta Levina

Abstract

The problem of community detection in networks is usually formulated as finding a single partition of the network into some “correct” number of communities. We argue that it is more interpretable and in some regimes more accurate to construct a hierarchical tree of communities instead. This can be done with a simple top-down recursive partitioning algorithm, starting with a single community and separating the nodes into two communities by spectral clustering repeatedly, until a stopping rule suggests there are no further communities. This class of algorithms is model-free, computationally efficient, and requires no tuning other than selecting a stopping rule. We show that there are regimes where this approach outperforms K-way spectral clustering, and propose a natural framework for analyzing the algorithm’s theoretical performance, the binary tree stochastic block model. Under this model, we prove that the algorithm correctly recovers the entire community tree under relatively mild assumptions. We apply the algorithm to a gene network based on gene co-occurrence in 1580 research papers on anemia, and identify six clusters of genes in a meaningful hierarchy. We also illustrate the algorithm on a dataset of statistics papers. Supplementary materials for this article are available online.

Suggested Citation

  • Tianxi Li & Lihua Lei & Sharmodeep Bhattacharyya & Koen Van den Berge & Purnamrita Sarkar & Peter J. Bickel & Elizaveta Levina, 2022. "Hierarchical Community Detection by Recursive Partitioning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(538), pages 951-968, April.
  • Handle: RePEc:taf:jnlasa:v:117:y:2022:i:538:p:951-968
    DOI: 10.1080/01621459.2020.1833888
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2020.1833888
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2020.1833888?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davide Viviano & Lihua Lei & Guido Imbens & Brian Karrer & Okke Schrijvers & Liang Shi, 2023. "Causal clustering: design of cluster experiments under network interference," Papers 2310.14983, arXiv.org, revised Jan 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:117:y:2022:i:538:p:951-968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.