IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v117y2022i537p411-427.html
   My bibliography  Save this article

Covariate Adaptive False Discovery Rate Control With Applications to Omics-Wide Multiple Testing

Author

Listed:
  • Xianyang Zhang
  • Jun Chen

Abstract

Conventional multiple testing procedures often assume hypotheses for different features are exchangeable. However, in many scientific applications, additional covariate information regarding the patterns of signals and nulls are available. In this article, we introduce an FDR control procedure in large-scale inference problem that can incorporate covariate information. We develop a fast algorithm to implement the proposed procedure and prove its asymptotic validity even when the underlying likelihood ratio model is misspecified and the p-values are weakly dependent (e.g., strong mixing). Extensive simulations are conducted to study the finite sample performance of the proposed method and we demonstrate that the new approach improves over the state-of-the-art approaches by being flexible, robust, powerful, and computationally efficient. We finally apply the method to several omics datasets arising from genomics studies with the aim to identify omics features associated with some clinical and biological phenotypes. We show that the method is overall the most powerful among competing methods, especially when the signal is sparse. The proposed covariate adaptive multiple testing procedure is implemented in the R package CAMT. Supplementary materials for this article are available online.

Suggested Citation

  • Xianyang Zhang & Jun Chen, 2022. "Covariate Adaptive False Discovery Rate Control With Applications to Omics-Wide Multiple Testing," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(537), pages 411-427, January.
  • Handle: RePEc:taf:jnlasa:v:117:y:2022:i:537:p:411-427
    DOI: 10.1080/01621459.2020.1783273
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2020.1783273
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2020.1783273?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dennis Leung & Wenguang Sun, 2022. "ZAP: Z$$ Z $$‐value adaptive procedures for false discovery rate control with side information," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1886-1946, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:117:y:2022:i:537:p:411-427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.