Author
Listed:
- Ben Dai
- Xiaotong Shen
- Junhui Wang
Abstract
Numerical embedding has become one standard technique for processing and analyzing unstructured data that cannot be expressed in a predefined fashion. It stores the main characteristics of data by mapping it onto a numerical vector. An embedding is often unsupervised and constructed by transfer learning from large-scale unannotated data. Given an embedding, a downstream learning method, referred to as a two-stage method, is applicable to unstructured data. In this article, we introduce a novel framework of embedding learning to deliver a higher learning accuracy than the two-stage method while identifying an optimal learning-adaptive embedding. In particular, we propose a concept of U-minimal sufficient learning-adaptive embeddings, based on which we seek an optimal one to maximize the learning accuracy subject to an embedding constraint. Moreover, when specializing the general framework to classification, we derive a graph embedding classifier based on a hyperlink tensor representing multiple hypergraphs, directed or undirected, characterizing multi-way relations of unstructured data. Numerically, we design algorithms based on blockwise coordinate descent and projected gradient descent to implement linear and feed-forward neural network classifiers, respectively. Theoretically, we establish a learning theory to quantify the generalization error of the proposed method. Moreover, we show, in linear regression, that the one-hot encoder is more preferable among two-stage methods, yet its dimension restriction hinders its predictive performance. For a graph embedding classifier, the generalization error matches up to the standard fast rate or the parametric rate for linear or nonlinear classification. Finally, we demonstrate the utility of the classifiers on two benchmarks in grammatical classification and sentiment analysis. Supplementary materials for this article are available online.
Suggested Citation
Ben Dai & Xiaotong Shen & Junhui Wang, 2022.
"Embedding Learning,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(537), pages 307-319, January.
Handle:
RePEc:taf:jnlasa:v:117:y:2022:i:537:p:307-319
DOI: 10.1080/01621459.2020.1775614
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:117:y:2022:i:537:p:307-319. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.