IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v116y2021i536p1898-1913.html
   My bibliography  Save this article

Randomization Tests for Weak Null Hypotheses in Randomized Experiments

Author

Listed:
  • Jason Wu
  • Peng Ding

Abstract

The Fisher randomization test (FRT) is appropriate for any test statistic, under a sharp null hypothesis that can recover all missing potential outcomes. However, it is often sought after to test a weak null hypothesis that the treatment does not affect the units on average. To use the FRT for a weak null hypothesis, we must address two issues. First, we need to impute the missing potential outcomes although the weak null hypothesis cannot determine all of them. Second, we need to choose a proper test statistic. For a general weak null hypothesis, we propose an approach to imputing missing potential outcomes under a compatible sharp null hypothesis. Building on this imputation scheme, we advocate a studentized statistic. The resulting FRT has multiple desirable features. First, it is model-free. Second, it is finite-sample exact under the sharp null hypothesis that we use to impute the potential outcomes. Third, it conservatively controls large-sample Type I error under the weak null hypothesis of interest. Therefore, our FRT is agnostic to the treatment effect heterogeneity. We establish a unified theory for general factorial experiments and extend it to stratified and clustered experiments. Supplementary materials for this article are available online.

Suggested Citation

  • Jason Wu & Peng Ding, 2021. "Randomization Tests for Weak Null Hypotheses in Randomized Experiments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1898-1913, October.
  • Handle: RePEc:taf:jnlasa:v:116:y:2021:i:536:p:1898-1913
    DOI: 10.1080/01621459.2020.1750415
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2020.1750415
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2020.1750415?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shaina J. Alexandria & Michael G. Hudgens & Allison E. Aiello, 2023. "Assessing intervention effects in a randomized trial within a social network," Biometrics, The International Biometric Society, vol. 79(2), pages 1409-1419, June.
    2. Haoge Chang, 2023. "Design-based Estimation Theory for Complex Experiments," Papers 2311.06891, arXiv.org.
    3. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    4. Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org.
    5. Haoge Chang & Joel A. Middleton & P. M. Aronow, 2024. "Exact Bias Correction for Linear Adjustment of Randomized Controlled Trials," Econometrica, Econometric Society, vol. 92(5), pages 1503-1519, September.
    6. Ke Zhu & Hanzhong Liu, 2023. "Pair‐switching rerandomization," Biometrics, The International Biometric Society, vol. 79(3), pages 2127-2142, September.
    7. Rauf Ahmad & Per Johansson & Mårten Schultzberg, 2024. "Is Fisher inference inferior to Neyman inference for policy analysis?," Statistical Papers, Springer, vol. 65(6), pages 3425-3445, August.
    8. David M. Ritzwoller & Joseph P. Romano & Azeem M. Shaikh, 2024. "Randomization Inference: Theory and Applications," Papers 2406.09521, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:116:y:2021:i:536:p:1898-1913. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.