Author
Listed:
- Xialiang Dou
- Tengyuan Liang
Abstract
Consider the problem: given the data pair (x,y) drawn from a population with f*(x)=E[y|x=x] , specify a neural network model and run gradient flow on the weights over time until reaching any stationarity. How does ft , the function computed by the neural network at time t, relate to f* , in terms of approximation and representation? What are the provable benefits of the adaptive representation by neural networks compared to the pre-specified fixed basis representation in the classical nonparametric literature? We answer the above questions via a dynamic reproducing kernel Hilbert space (RKHS) approach indexed by the training process of neural networks. Firstly, we show that when reaching any local stationarity, gradient flow learns an adaptive RKHS representation and performs the global least-squares projection onto the adaptive RKHS, simultaneously. Secondly, we prove that as the RKHS is data-adaptive and task-specific, the residual for f* lies in a subspace that is potentially much smaller than the orthogonal complement of the RKHS. The result formalizes the representation and approximation benefits of neural networks. Lastly, we show that the neural network function computed by gradient flow converges to the kernel ridgeless regression with an adaptive kernel, in the limit of vanishing regularization. The adaptive kernel viewpoint provides new angles of studying the approximation, representation, generalization, and optimization advantages of neural networks.
Suggested Citation
Xialiang Dou & Tengyuan Liang, 2021.
"Training Neural Networks as Learning Data-adaptive Kernels: Provable Representation and Approximation Benefits,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(535), pages 1507-1520, July.
Handle:
RePEc:taf:jnlasa:v:116:y:2021:i:535:p:1507-1520
DOI: 10.1080/01621459.2020.1745812
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:116:y:2021:i:535:p:1507-1520. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.