IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v116y2021i535p1307-1318.html
   My bibliography  Save this article

Statistical Inference for High-Dimensional Models via Recursive Online-Score Estimation

Author

Listed:
  • Chengchun Shi
  • Rui Song
  • Wenbin Lu
  • Runze Li

Abstract

In this article, we develop a new estimation and valid inference method for single or low-dimensional regression coefficients in high-dimensional generalized linear models. The number of the predictors is allowed to grow exponentially fast with respect to the sample size. The proposed estimator is computed by solving a score function. We recursively conduct model selection to reduce the dimensionality from high to a moderate scale and construct the score equation based on the selected variables. The proposed confidence interval (CI) achieves valid coverage without assuming consistency of the model selection procedure. When the selection consistency is achieved, we show the length of the proposed CI is asymptotically the same as the CI of the “oracle” method which works as well as if the support of the control variables were known. In addition, we prove the proposed CI is asymptotically narrower than the CIs constructed based on the desparsified Lasso estimator and the decorrelated score statistic. Simulation studies and real data applications are presented to back up our theoretical findings. Supplementary materials for this article are available online.

Suggested Citation

  • Chengchun Shi & Rui Song & Wenbin Lu & Runze Li, 2021. "Statistical Inference for High-Dimensional Models via Recursive Online-Score Estimation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(535), pages 1307-1318, July.
  • Handle: RePEc:taf:jnlasa:v:116:y:2021:i:535:p:1307-1318
    DOI: 10.1080/01621459.2019.1710154
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2019.1710154
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2019.1710154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shengfei Tang & Yanmei Shi & Qi Zhang, 2023. "Bias-Corrected Inference of High-Dimensional Generalized Linear Models," Mathematics, MDPI, vol. 11(4), pages 1-14, February.
    2. Huang, Yuan & Li, Changcheng & Li, Runze & Yang, Songshan, 2022. "An overview of tests on high-dimensional means," Journal of Multivariate Analysis, Elsevier, vol. 188(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:116:y:2021:i:535:p:1307-1318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.