IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v116y2021i535p1254-1264.html
   My bibliography  Save this article

Complier Stochastic Direct Effects: Identification and Robust Estimation

Author

Listed:
  • Kara E. Rudolph
  • Oleg Sofrygin
  • Mark J. van der Laan

Abstract

Mediation analysis is critical to understanding the mechanisms underlying exposure-outcome relationships. In this article, we identify the instrumental variable-direct effect of the exposure on the outcome not through the mediator, using randomization of the instrument. We call this estimand the complier stochastic direct effect (CSDE). To our knowledge, such an estimand has not previously been considered or estimated. We propose and evaluate several estimators for the CSDE: a ratio of inverse-probability of treatment-weighted estimators (IPTW), a ratio of estimating equation estimators (EE), a ratio of targeted minimum loss-based estimators (TMLE), and a TMLE that targets the CSDE directly. These estimators are applicable for a variety of study designs, including randomized encouragement trials, like the Moving to Opportunity housing voucher experiment we consider as an illustrative example, treatment discontinuities, and Mendelian randomization. We found the IPTW estimator to be the most sensitive to finite sample bias, resulting in bias of over 40% even when all models were correctly specified in a sample size of N = 100. In contrast, the EE estimator and TMLE that targets the CSDE directly were far less sensitive. The EE and TML estimators also have advantages in terms of efficiency and reduced reliance on correct parametric model specification. Supplementary materials for this article are available online.

Suggested Citation

  • Kara E. Rudolph & Oleg Sofrygin & Mark J. van der Laan, 2021. "Complier Stochastic Direct Effects: Identification and Robust Estimation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(535), pages 1254-1264, July.
  • Handle: RePEc:taf:jnlasa:v:116:y:2021:i:535:p:1254-1264
    DOI: 10.1080/01621459.2019.1704292
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2019.1704292
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2019.1704292?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kara E. Rudolph & Iván Díaz, 2022. "When the ends do not justify the means: Learning who is predicted to have harmful indirect effects," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 573-589, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:116:y:2021:i:535:p:1254-1264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.