IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v116y2021i535p1060-1074.html
   My bibliography  Save this article

Network Dependence Can Lead to Spurious Associations and Invalid Inference

Author

Listed:
  • Youjin Lee
  • Elizabeth L. Ogburn

Abstract

Researchers across the health and social sciences generally assume that observations are independent, even while relying on convenience samples that draw subjects from one or a small number of communities, schools, hospitals, etc. A paradigmatic example of this is the Framingham Heart Study (FHS). Many of the limitations of such samples are well-known, but the issue of statistical dependence due to social network ties has not previously been addressed. We show that, along with anticonservative variance estimation, this can result in spurious associations due to network dependence. Using a statistical test that we adapted from one developed for spatial autocorrelation, we test for network dependence in several of the thousands of influential papers that have been published using FHS data. Results suggest that some of the many decades of research on coronary heart disease, other health outcomes, and peer influence using FHS data may suffer from spurious associations, error-prone point estimates, and anticonservative inference due to unacknowledged network dependence. These issues are not unique to the FHS; as researchers in psychology, medicine, and beyond grapple with replication failures, this unacknowledged source of invalid statistical inference should be part of the conversation. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.

Suggested Citation

  • Youjin Lee & Elizabeth L. Ogburn, 2021. "Network Dependence Can Lead to Spurious Associations and Invalid Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(535), pages 1060-1074, July.
  • Handle: RePEc:taf:jnlasa:v:116:y:2021:i:535:p:1060-1074
    DOI: 10.1080/01621459.2020.1782219
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2020.1782219
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2020.1782219?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. De Nicola, Giacomo & Fritz, Cornelius & Mehrl, Marius & Kauermann, Göran, 2023. "Dependence matters: Statistical models to identify the drivers of tie formation in economic networks," Journal of Economic Behavior & Organization, Elsevier, vol. 215(C), pages 351-363.
    2. Brent Simpson & Bradley Montgomery & David Melamed, 2023. "Reputations for treatment of outgroup members can prevent the emergence of political segregation in cooperative networks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Christis Katsouris, 2023. "Statistical Estimation for Covariance Structures with Tail Estimates using Nodewise Quantile Predictive Regression Models," Papers 2305.11282, arXiv.org, revised Jul 2023.
    4. Jiang, Zhi-Qiang & Wang, Peng & Ma, Jun-Chao & Zhu, Peican & Han, Zhen & Podobnik, Boris & Stanley, H. Eugene & Zhou, Wei-Xing & Alfaro-Bittner, Karin & Boccaletti, Stefano, 2023. "Unraveling the effects of network, direct and indirect reciprocity in online societies," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:116:y:2021:i:535:p:1060-1074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.