IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v116y2021i534p605-618.html
   My bibliography  Save this article

Bayesian Structure Learning in Multilayered Genomic Networks

Author

Listed:
  • Min Jin Ha
  • Francesco Claudio Stingo
  • Veerabhadran Baladandayuthapani

Abstract

Integrative network modeling of data arising from multiple genomic platforms provides insight into the holistic picture of the interactive system, as well as the flow of information across many disease domains including cancer. The basic data structure consists of a sequence of hierarchically ordered datasets for each individual subject, which facilitates integration of diverse inputs, such as genomic, transcriptomic, and proteomic data. A primary analytical task in such contexts is to model the layered architecture of networks where the vertices can be naturally partitioned into ordered layers, dictated by multiple platforms, and exhibit both undirected and directed relationships. We propose a multilayered Gaussian graphical model (mlGGM) to investigate conditional independence structures in such multilevel genomic networks in human cancers. We implement a Bayesian node-wise selection (BANS) approach based on variable selection techniques that coherently accounts for the multiple types of dependencies in mlGGM; this flexible strategy exploits edge-specific prior knowledge and selects sparse and interpretable models. Through simulated data generated under various scenarios, we demonstrate that BANS outperforms other existing multivariate regression-based methodologies. Our integrative genomic network analysis for key signaling pathways across multiple cancer types highlights commonalities and differences of p53 integrative networks and epigenetic effects of BRCA2 on p53 and its interaction with T68 phosphorylated CHK2, that may have translational utilities of finding biomarkers and therapeutic targets. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.

Suggested Citation

  • Min Jin Ha & Francesco Claudio Stingo & Veerabhadran Baladandayuthapani, 2021. "Bayesian Structure Learning in Multilayered Genomic Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 605-618, April.
  • Handle: RePEc:taf:jnlasa:v:116:y:2021:i:534:p:605-618
    DOI: 10.1080/01621459.2020.1775611
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2020.1775611
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2020.1775611?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Federico Castelletti & Guido Consonni & Luca Rocca, 2022. "Discussion to: Bayesian graphical models for modern biological applications by Y. Ni, V. Baladandayuthapani, M. Vannucci and F.C. Stingo," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 261-267, June.
    2. Huanyu Z. Li & Ashley C. W. Pike & Irina Lotsaris & Gamma Chi & Jesper S. Hansen & Sarah C. Lee & Karin E. J. Rödström & Simon R. Bushell & David Speedman & Adam Evans & Dong Wang & Didi He & Leela Sh, 2024. "Structure and function of the SIT1 proline transporter in complex with the COVID-19 receptor ACE2," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Anindya Bhadra, 2022. "Discussion to: Bayesian graphical models for modern biological applications by Y. Ni, V. Baladandayuthapani, M. Vannucci and F.C. Stingo," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 235-239, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:116:y:2021:i:534:p:605-618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.