Author
Listed:
- Yifei Sun
- Charles E. McCulloch
- Kieren A. Marr
- Chiung-Yu Huang
Abstract
Although increasingly used as a data resource for assembling cohorts, electronic health records (EHRs) pose many analytic challenges. In particular, a patient’s health status influences when and what data are recorded, generating sampling bias in the collected data. In this article, we consider recurrent event analysis using EHR data. Conventional regression methods for event risk analysis usually require the values of covariates to be observed throughout the follow-up period. In EHR databases, time-dependent covariates are intermittently measured during clinical visits, and the timing of these visits is informative in the sense that it depends on the disease course. Simple methods, such as the last-observation-carried-forward approach, can lead to biased estimation. On the other hand, complex joint models require additional assumptions on the covariate process and cannot be easily extended to handle multiple longitudinal predictors. By incorporating sampling weights derived from estimating the observation time process, we develop a novel estimation procedure based on inverse-rate-weighting and kernel-smoothing for the semiparametric proportional rate model of recurrent events. The proposed methods do not require model specifications for the covariate processes and can easily handle multiple time-dependent covariates. Our methods are applied to a kidney transplant study for illustration. Supplementary materials for this article are available online.
Suggested Citation
Yifei Sun & Charles E. McCulloch & Kieren A. Marr & Chiung-Yu Huang, 2021.
"Recurrent Events Analysis With Data Collected at Informative Clinical Visits in Electronic Health Records,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 594-604, April.
Handle:
RePEc:taf:jnlasa:v:116:y:2021:i:534:p:594-604
DOI: 10.1080/01621459.2020.1801447
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:116:y:2021:i:534:p:594-604. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.