Author
Listed:
- Sharmistha Guha
- Abel Rodriguez
Abstract
This article focuses on the relationship between a measure of creativity and the human brain network for subjects in a brain connectome dataset obtained using a diffusion weighted magnetic resonance imaging procedure. We identify brain regions and interconnections that have a significant effect on creativity. Brain networks are often expressed in terms of symmetric adjacency matrices, with row and column indices of the matrix representing the regions of interest (ROI), and a cell entry signifying the estimated number of fiber bundles connecting the corresponding row and column ROIs. Current statistical practices for regression analysis with the brain network as the predictor and the measure of creativity as the response typically vectorize the network predictor matrices prior to any analysis, thus failing to account for the important structural information in the network. This results in poor inferential and predictive performance in presence of small sample sizes. To answer the scientific questions discussed above, we develop a flexible Bayesian framework that avoids reshaping the network predictor matrix, draws inference on brain ROIs and interconnections significantly related to creativity, and enables accurate prediction of creativity from a brain network. A novel class of network shrinkage priors for the coefficient corresponding to the network predictor is proposed to achieve these goals simultaneously. The Bayesian framework allows characterization of uncertainty in the findings. Empirical results in simulation studies illustrate substantial inferential and predictive gains of the proposed framework in comparison with the ordinary high-dimensional Bayesian shrinkage priors and penalized optimization schemes. Our framework yields new insights into the relationship of brain regions with creativity, also providing the uncertainty associated with the scientific findings. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.
Suggested Citation
Sharmistha Guha & Abel Rodriguez, 2021.
"Bayesian Regression With Undirected Network Predictors With an Application to Brain Connectome Data,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 581-593, April.
Handle:
RePEc:taf:jnlasa:v:116:y:2021:i:534:p:581-593
DOI: 10.1080/01621459.2020.1772079
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:116:y:2021:i:534:p:581-593. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.