IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v116y2021i533p93-106.html
   My bibliography  Save this article

A Hierarchical Max-Infinitely Divisible Spatial Model for Extreme Precipitation

Author

Listed:
  • Gregory P. Bopp
  • Benjamin A. Shaby
  • Raphaël Huser

Abstract

Understanding the spatial extent of extreme precipitation is necessary for determining flood risk and adequately designing infrastructure (e.g., stormwater pipes) to withstand such hazards. While environmental phenomena typically exhibit weakening spatial dependence at increasingly extreme levels, limiting max-stable process models for block maxima have a rigid dependence structure that does not capture this type of behavior. We propose a flexible Bayesian model from a broader family of (conditionally) max-infinitely divisible processes that allows for weakening spatial dependence at increasingly extreme levels, and due to a hierarchical representation of the likelihood in terms of random effects, our inference approach scales to large datasets. Therefore, our model not only has a flexible dependence structure, but it also allows for fast, fully Bayesian inference, prediction and conditional simulation in high dimensions. The proposed model is constructed using flexible random basis functions that are estimated from the data, allowing for straightforward inspection of the predominant spatial patterns of extremes. In addition, the described process possesses (conditional) max-stability as a special case, making inference on the tail dependence class possible. We apply our model to extreme precipitation in North-Eastern America, and show that the proposed model adequately captures the extremal behavior of the data. Interestingly, we find that the principal modes of spatial variation estimated from our model resemble observed patterns in extreme precipitation events occurring along the coast (e.g., with localized tropical cyclones and convective storms) and mountain range borders. Our model, which can easily be adapted to other types of environmental datasets, is therefore useful to identify extreme weather patterns and regions at risk. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.

Suggested Citation

  • Gregory P. Bopp & Benjamin A. Shaby & Raphaël Huser, 2021. "A Hierarchical Max-Infinitely Divisible Spatial Model for Extreme Precipitation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(533), pages 93-106, March.
  • Handle: RePEc:taf:jnlasa:v:116:y:2021:i:533:p:93-106
    DOI: 10.1080/01621459.2020.1750414
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2020.1750414
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2020.1750414?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhong, Peng & Huser, Raphaël & Opitz, Thomas, 2024. "Exact Simulation of Max-Infinitely Divisible Processes," Econometrics and Statistics, Elsevier, vol. 30(C), pages 96-109.
    2. Brück, Florian, 2023. "Exact simulation of continuous max-id processes with applications to exchangeable max-id sequences," Journal of Multivariate Analysis, Elsevier, vol. 193(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:116:y:2021:i:533:p:93-106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.