Author
Listed:
- Jelena Bradic
- Gerda Claeskens
- Thomas Gueuning
Abstract
Many scientific and engineering challenges—ranging from pharmacokinetic drug dosage allocation and personalized medicine to marketing mix (4Ps) recommendations—require an understanding of the unobserved heterogeneity to develop the best decision making-processes. In this article, we develop a hypothesis test and the corresponding p-value for testing for the significance of the homogeneous structure in linear mixed models. A robust matching moment construction is used for creating a test that adapts to the size of the model sparsity. When unobserved heterogeneity at a cluster level is constant, we show that our test is both consistent and unbiased even when the dimension of the model is extremely high. Our theoretical results rely on a new family of adaptive sparse estimators of the fixed effects that do not require consistent estimation of the random effects. Moreover, our inference results do not require consistent model selection. We showcase that moment matching can be extended to nonlinear mixed effects models and to generalized linear mixed effects models. In numerical and real data experiments, we find that the developed method is extremely accurate, that it adapts to the size of the underlying model and is decidedly powerful in the presence of irrelevant covariates.Supplementary materials for this article are available online.
Suggested Citation
Jelena Bradic & Gerda Claeskens & Thomas Gueuning, 2020.
"Fixed Effects Testing in High-Dimensional Linear Mixed Models,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 1835-1850, December.
Handle:
RePEc:taf:jnlasa:v:115:y:2020:i:532:p:1835-1850
DOI: 10.1080/01621459.2019.1660172
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:115:y:2020:i:532:p:1835-1850. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.