Author
Listed:
- Changgee Chang
- Jeong Hoon Jang
- Amita Manatunga
- Andrew T. Taylor
- Qi Long
Abstract
Kidney obstruction, if untreated in a timely manner, can lead to irreversible loss of renal function. A widely used technology for evaluations of kidneys with suspected obstruction is diuresis renography. However, it is generally very challenging for radiologists who typically interpret renography data in practice to build high level of competency due to the low volume of renography studies and insufficient training. Another challenge is that there is currently no gold standard for detection of kidney obstruction. Seeking to develop a computer-aided diagnostic (CAD) tool that can assist practicing radiologists to reduce errors in the interpretation of kidney obstruction, a recent study collected data from diuresis renography, interpretations on the renography data from highly experienced nuclear medicine experts as well as clinical data. To achieve the objective, we develop a statistical model that can be used as a CAD tool for assisting radiologists in kidney interpretation. We use a Bayesian latent class modeling approach for predicting kidney obstruction through the integrative analysis of time-series renogram data, expert ratings, and clinical variables. A nonparametric Bayesian latent factor regression approach is adopted for modeling renogram curves in which the coefficients of the basis functions are parameterized via the factor loadings dependent on the latent disease status and the extended latent factors that can also adjust for clinical variables. A hierarchical probit model is used for expert ratings, allowing for training with rating data from multiple experts while predicting with at most one expert, which makes the proposed model operable in practice. An efficient MCMC algorithm is developed to train the model and predict kidney obstruction with associated uncertainty. We demonstrate the superiority of the proposed method over several existing methods through extensive simulations. Analysis of the renal study also lends support to the usefulness of our model as a CAD tool to assist less experienced radiologists in the field. Supplementary materials for this article are available online.
Suggested Citation
Changgee Chang & Jeong Hoon Jang & Amita Manatunga & Andrew T. Taylor & Qi Long, 2020.
"A Bayesian Latent Class Model to Predict Kidney Obstruction in the Absence of Gold Standard,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 1645-1663, December.
Handle:
RePEc:taf:jnlasa:v:115:y:2020:i:532:p:1645-1663
DOI: 10.1080/01621459.2019.1689983
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:115:y:2020:i:532:p:1645-1663. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.