IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v115y2020i531p1304-1319.html
   My bibliography  Save this article

Likelihood Ratio Tests for a Large Directed Acyclic Graph

Author

Listed:
  • Chunlin Li
  • Xiaotong Shen
  • Wei Pan

Abstract

Inference of directional pairwise relations between interacting units in a directed acyclic graph (DAG), such as a regulatory gene network, is common in practice, imposing challenges because of lack of inferential tools. For example, inferring a specific gene pathway of a regulatory gene network is biologically important. Yet, frequentist inference of directionality of connections remains largely unexplored for regulatory models. In this article, we propose constrained likelihood ratio tests for inference of the connectivity as well as directionality subject to nonconvex acyclicity constraints in a Gaussian directed graphical model. Particularly, we derive the asymptotic distributions of the constrained likelihood ratios in a high-dimensional situation. For testing of connectivity, the asymptotic distribution is either chi-squared or normal depending on if the number of testable links in a DAG model is small. For testing of directionality, the asymptotic distribution is the minimum of d independent chi-squared variables with one-degree of freedom or a generalized Gamma distribution depending on if d is small, where d is number of breakpoints in a hypothesized pathway. Moreover, we develop a computational method to perform the proposed tests, which integrates an alternating direction method of multipliers and difference convex programming. Finally, the power analysis and simulations suggest that the tests achieve the desired objectives of inference. An analysis of an Alzheimer’s disease gene expression dataset illustrates the utility of the proposed method to infer a directed pathway in a gene network.

Suggested Citation

  • Chunlin Li & Xiaotong Shen & Wei Pan, 2020. "Likelihood Ratio Tests for a Large Directed Acyclic Graph," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(531), pages 1304-1319, July.
  • Handle: RePEc:taf:jnlasa:v:115:y:2020:i:531:p:1304-1319
    DOI: 10.1080/01621459.2019.1623042
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2019.1623042
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2019.1623042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Chengchun & Zhou, Yunzhe & Li, Lexin, 2023. "Testing directed acyclic graph via structural, supervised and generative adversarial learning," LSE Research Online Documents on Economics 119446, London School of Economics and Political Science, LSE Library.
    2. Haoran Xue & Wei Pan, 2020. "Inferring causal direction between two traits in the presence of horizontal pleiotropy with GWAS summary data," PLOS Genetics, Public Library of Science, vol. 16(11), pages 1-30, November.
    3. Kuang‐Yao Lee & Lexin Li, 2022. "Functional structural equation model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 600-629, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:115:y:2020:i:531:p:1304-1319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.