IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v115y2020i531p1214-1226.html
   My bibliography  Save this article

Testing for Jump Spillovers Without Testing for Jumps

Author

Listed:
  • Valentina Corradi
  • Walter Distaso
  • Marcelo Fernandes

Abstract

This article develops statistical tools for testing conditional independence among the jump components of the daily quadratic variation, which we estimate using intraday data. To avoid sequential bias distortion, we do not pretest for the presence of jumps. If the null is true, our test statistic based on daily integrated jumps weakly converges to a Gaussian random variable if both assets have jumps. If instead at least one asset has no jumps, then the statistic approaches zero in probability. We show how to compute asymptotically valid bootstrap-based critical values that result in a consistent test with asymptotic size equal to or smaller than the nominal size. Empirically, we study jump linkages between US futures and equity index markets. We find not only strong evidence of jump cross-excitation between the SPDR exchange-traded fund and E-mini futures on the S&P 500 index, but also that integrated jumps in the E-mini futures during the overnight period carry relevant information. Supplementary materials for this article are available as an online supplement.

Suggested Citation

  • Valentina Corradi & Walter Distaso & Marcelo Fernandes, 2020. "Testing for Jump Spillovers Without Testing for Jumps," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(531), pages 1214-1226, July.
  • Handle: RePEc:taf:jnlasa:v:115:y:2020:i:531:p:1214-1226
    DOI: 10.1080/01621459.2019.1609971
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2019.1609971
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2019.1609971?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deniz Erdemlioglu & Christopher J. Neely & Xiye Yang, 2023. "Systemic Tail Risk: High-Frequency Measurement, Evidence and Implications," Working Papers 2023-016, Federal Reserve Bank of St. Louis.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:115:y:2020:i:531:p:1214-1226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.