IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v115y2020i531p1079-1091.html
   My bibliography  Save this article

Genetic Variant Set-Based Tests Using the Generalized Berk–Jones Statistic With Application to a Genome-Wide Association Study of Breast Cancer

Author

Listed:
  • Ryan Sun
  • Xihong Lin

Abstract

Studying the effects of groups of single nucleotide polymorphisms (SNPs), as in a gene, genetic pathway, or network, can provide novel insight into complex diseases such as breast cancer, uncovering new genetic associations and augmenting the information that can be gleaned from studying SNPs individually. Common challenges in set-based genetic association testing include weak effect sizes, correlation between SNPs in a SNP-set, and scarcity of signals, with individual SNP effects often ranging from extremely sparse to moderately sparse in number. Motivated by these challenges, we propose the Generalized Berk–Jones (GBJ) test for the association between a SNP-set and outcome. The GBJ extends the Berk–Jones statistic by accounting for correlation among SNPs, and it provides advantages over the Generalized Higher Criticism test when signals in a SNP-set are moderately sparse. We also provide an analytic p-value calculation for SNP-sets of any finite size, and we develop an omnibus statistic that is robust to the degree of signal sparsity. An additional advantage of our work is the ability to conduct inference using individual SNP summary statistics from a genome-wide association study (GWAS). We evaluate the finite sample performance of the GBJ through simulation and apply the method to identify breast cancer risk genes in a GWAS conducted by the Cancer Genetic Markers of Susceptibility Consortium. Our results suggest evidence of association between FGFR2 and breast cancer and also identify other potential susceptibility genes, complementing conventional SNP-level analysis. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.

Suggested Citation

  • Ryan Sun & Xihong Lin, 2020. "Genetic Variant Set-Based Tests Using the Generalized Berk–Jones Statistic With Application to a Genome-Wide Association Study of Breast Cancer," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(531), pages 1079-1091, July.
  • Handle: RePEc:taf:jnlasa:v:115:y:2020:i:531:p:1079-1091
    DOI: 10.1080/01621459.2019.1660170
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2019.1660170
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2019.1660170?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ryan Sun & Liang Zhu & Yimei Li & Yutaka Yasui & Leslie Robison, 2023. "Inference for set‐based effects in genetic association studies with interval‐censored outcomes," Biometrics, The International Biometric Society, vol. 79(2), pages 1573-1585, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:115:y:2020:i:531:p:1079-1091. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.