IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v115y2020i531p1055-1065.html
   My bibliography  Save this article

ICeD-T Provides Accurate Estimates of Immune Cell Abundance in Tumor Samples by Allowing for Aberrant Gene Expression Patterns

Author

Listed:
  • Douglas R. Wilson
  • Chong Jin
  • Joseph G. Ibrahim
  • Wei Sun

Abstract

Immunotherapies have attracted lots of research interests recently. The need to understand the underlying mechanisms of immunotherapies and to develop precision immunotherapy regimens has spurred great interest in characterizing immune cell composition within the tumor microenvironment. Several methods have been developed to estimate immune cell composition using gene expression data from bulk tumor samples. However, these methods are not flexible enough to handle aberrant patterns of gene expression data, for example, inconsistent cell type-specific gene expression between purified reference samples and tumor samples. We propose a novel statistical method for expression deconvolution called immune cell deconvolution in tumor tissues (ICeD-T). ICeD-T automatically identifies aberrant genes whose expression are inconsistent with the deconvolution model and down-weights their contributions to cell type abundance estimates. We evaluated the performance of ICeD-T versus existing methods in simulation studies and several real data analyses. ICeD-T displayed comparable or superior performance to these competing methods. Applying these methods to assess the relationship between immunotherapy response and immune cell composition, ICeD-T is able to identify significant associations that are missed by its competitors. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.

Suggested Citation

  • Douglas R. Wilson & Chong Jin & Joseph G. Ibrahim & Wei Sun, 2020. "ICeD-T Provides Accurate Estimates of Immune Cell Abundance in Tumor Samples by Allowing for Aberrant Gene Expression Patterns," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(531), pages 1055-1065, July.
  • Handle: RePEc:taf:jnlasa:v:115:y:2020:i:531:p:1055-1065
    DOI: 10.1080/01621459.2019.1654874
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2019.1654874
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2019.1654874?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kobe Ridder & Huiwen Che & Kaat Leroy & Bernard Thienpont, 2024. "Benchmarking of methods for DNA methylome deconvolution," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Paul Little & Si Liu & Vasyl Zhabotynsky & Yun Li & Dan-Yu Lin & Wei Sun, 2023. "A computational method for cell type-specific expression quantitative trait loci mapping using bulk RNA-seq data," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:115:y:2020:i:531:p:1055-1065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.