IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v115y2020i530p997-1010.html
   My bibliography  Save this article

Additive Functional Regression for Densities as Responses

Author

Listed:
  • Kyunghee Han
  • Hans-Georg Müller
  • Byeong U. Park

Abstract

We propose and investigate additive density regression, a novel additive functional regression model for situations where the responses are random distributions that can be viewed as random densities and the predictors are vectors. Data in the form of samples of densities or distributions are increasingly encountered in statistical analysis and there is a need for flexible regression models that accommodate random densities as responses. Such models are of special interest for multivariate continuous predictors, where unrestricted nonparametric regression approaches are subject to the curse of dimensionality. Additive models can be expected to maintain one-dimensional rates of convergence while permitting a substantial degree of flexibility. This motivates the development of additive regression models for situations where multivariate continuous predictors are coupled with densities as responses. To overcome the problem that distributions do not form a vector space, we utilize a class of transformations that map densities to unrestricted square integrable functions and then deploy an additive functional regression model to fit the responses in the unrestricted space, finally transforming back to density space. We implement the proposed additive model with an extended version of smooth backfitting and establish the consistency of this approach, including rates of convergence. The proposed method is illustrated with an application to the distributions of baby names in the United States.

Suggested Citation

  • Kyunghee Han & Hans-Georg Müller & Byeong U. Park, 2020. "Additive Functional Regression for Densities as Responses," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(530), pages 997-1010, April.
  • Handle: RePEc:taf:jnlasa:v:115:y:2020:i:530:p:997-1010
    DOI: 10.1080/01621459.2019.1604365
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2019.1604365
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2019.1604365?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tadao Hoshino, 2024. "Functional Spatial Autoregressive Models," Papers 2402.14763, arXiv.org, revised Oct 2024.
    2. Hsin‐wen Chang & Ian W. McKeague, 2022. "Empirical likelihood‐based inference for functional means with application to wearable device data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1947-1968, November.
    3. Petersen, Alexander & Zhang, Chao & Kokoszka, Piotr, 2022. "Modeling Probability Density Functions as Data Objects," Econometrics and Statistics, Elsevier, vol. 21(C), pages 159-178.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:115:y:2020:i:530:p:997-1010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.