IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v115y2020i530p896-907.html
   My bibliography  Save this article

Nonnegative Matrix Factorization Via Archetypal Analysis

Author

Listed:
  • Hamid Javadi
  • Andrea Montanari

Abstract

Given a collection of data points, nonnegative matrix factorization (NMF) suggests expressing them as convex combinations of a small set of “archetypes” with nonnegative entries. This decomposition is unique only if the true archetypes are nonnegative and sufficiently sparse (or the weights are sufficiently sparse), a regime that is captured by the separability condition and its generalizations. In this article, we study an approach to NMF that can be traced back to the work of Cutler and Breiman [(1994), “Archetypal Analysis,” Technometrics, 36, 338–347] and does not require the data to be separable, while providing a generally unique decomposition. We optimize a trade-off between two objectives: we minimize the distance of the data points from the convex envelope of the archetypes (which can be interpreted as an empirical risk), while also minimizing the distance of the archetypes from the convex envelope of the data (which can be interpreted as a data-dependent regularization). The archetypal analysis method of Cutler and Breiman is recovered as the limiting case in which the last term is given infinite weight. We introduce a “uniqueness condition” on the data which is necessary for identifiability. We prove that, under uniqueness (plus additional regularity conditions on the geometry of the archetypes), our estimator is robust. While our approach requires solving a nonconvex optimization problem, we find that standard optimization methods succeed in finding good solutions for both real and synthetic data. Supplementary materials for this article are available online

Suggested Citation

  • Hamid Javadi & Andrea Montanari, 2020. "Nonnegative Matrix Factorization Via Archetypal Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(530), pages 896-907, April.
  • Handle: RePEc:taf:jnlasa:v:115:y:2020:i:530:p:896-907
    DOI: 10.1080/01621459.2019.1594832
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2019.1594832
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2019.1594832?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:115:y:2020:i:530:p:896-907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.