IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v115y2020i530p810-821.html
   My bibliography  Save this article

Regression Analysis of Doubly Truncated Data

Author

Listed:
  • Zhiliang Ying
  • Wen Yu
  • Ziqiang Zhao
  • Ming Zheng

Abstract

Doubly truncated data are found in astronomy, econometrics, and survival analysis literature. They arise when each observation is confined to an interval, that is, only those which fall within their respective intervals are observed along with the intervals. Unlike the one-sided truncation that can be handled by counting process-based approach, doubly truncated data are much more difficult to handle. In their analysis of an astronomical dataset, Efron and Petrosian proposed some nonparametric methods for doubly truncated data. Motivated by their approach, as well as by the work of Bhattacharya et al. for right truncated data, we propose a general method for estimating the regression parameter when the dependent variable is subject to the double truncation. It extends the Mann–Whitney-type rank estimator and can be computed easily by existing software packages. Weighted rank estimation is also considered for improving estimation efficiency. We show that the resulting estimators are consistent and asymptotically normal. Resampling schemes are proposed with large sample justification for approximating the limiting distributions. The quasar data in Efron and Petrosian and an AIDS incubation data are analyzed by the new method. Simulation results show that the proposed method works well.

Suggested Citation

  • Zhiliang Ying & Wen Yu & Ziqiang Zhao & Ming Zheng, 2020. "Regression Analysis of Doubly Truncated Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(530), pages 810-821, April.
  • Handle: RePEc:taf:jnlasa:v:115:y:2020:i:530:p:810-821
    DOI: 10.1080/01621459.2019.1585252
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2019.1585252
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2019.1585252?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joshua R. Goldstein & Maria Osborne & Serge Atherwood & Casey F. Breen, 2023. "Mortality Modeling of Partially Observed Cohorts Using Administrative Death Records," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 42(3), pages 1-20, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:115:y:2020:i:530:p:810-821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.