IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v115y2020i529p318-333.html
   My bibliography  Save this article

Hierarchical Normalized Completely Random Measures to Cluster Grouped Data

Author

Listed:
  • Raffaele Argiento
  • Andrea Cremaschi
  • Marina Vannucci

Abstract

In this article, we propose a Bayesian nonparametric model for clustering grouped data. We adopt a hierarchical approach: at the highest level, each group of data is modeled according to a mixture, where the mixing distributions are conditionally independent normalized completely random measures (NormCRMs) centered on the same base measure, which is itself a NormCRM. The discreteness of the shared base measure implies that the processes at the data level share the same atoms. This desired feature allows to cluster together observations of different groups. We obtain a representation of the hierarchical clustering model by marginalizing with respect to the infinite dimensional NormCRMs. We investigate the properties of the clustering structure induced by the proposed model and provide theoretical results concerning the distribution of the number of clusters, within and between groups. Furthermore, we offer an interpretation in terms of generalized Chinese restaurant franchise process, which allows for posterior inference under both conjugate and nonconjugate models. We develop algorithms for fully Bayesian inference and assess performances by means of a simulation study and a real-data illustration. Supplementary materials for this article are available online.

Suggested Citation

  • Raffaele Argiento & Andrea Cremaschi & Marina Vannucci, 2020. "Hierarchical Normalized Completely Random Measures to Cluster Grouped Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 318-333, January.
  • Handle: RePEc:taf:jnlasa:v:115:y:2020:i:529:p:318-333
    DOI: 10.1080/01621459.2019.1594833
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2019.1594833
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2019.1594833?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Lijoi & Igor Prünster & Giovanni Rebaudo, 2023. "Flexible clustering via hidden hierarchical Dirichlet priors," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(1), pages 213-234, March.
    2. Pierpaolo De Blasi & Ramsés H. Mena & Igor Prünster, 2022. "Asymptotic behavior of the number of distinct values in a sample from the geometric stick-breaking process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(1), pages 143-165, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:115:y:2020:i:529:p:318-333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.