IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v115y2020i529p292-306.html
   My bibliography  Save this article

D-CCA: A Decomposition-Based Canonical Correlation Analysis for High-Dimensional Datasets

Author

Listed:
  • Hai Shu
  • Xiao Wang
  • Hongtu Zhu

Abstract

A typical approach to the joint analysis of two high-dimensional datasets is to decompose each data matrix into three parts: a low-rank common matrix that captures the shared information across datasets, a low-rank distinctive matrix that characterizes the individual information within a single dataset, and an additive noise matrix. Existing decomposition methods often focus on the orthogonality between the common and distinctive matrices, but inadequately consider the more necessary orthogonal relationship between the two distinctive matrices. The latter guarantees that no more shared information is extractable from the distinctive matrices. We propose decomposition-based canonical correlation analysis (D-CCA), a novel decomposition method that defines the common and distinctive matrices from the ℓ2 space of random variables rather than the conventionally used Euclidean space, with a careful construction of the orthogonal relationship between distinctive matrices. D-CCA represents a natural generalization of the traditional canonical correlation analysis. The proposed estimators of common and distinctive matrices are shown to be consistent and have reasonably better performance than some state-of-the-art methods in both simulated data and the real data analysis of breast cancer data obtained from The Cancer Genome Atlas. Supplementary materials for this article are available online.

Suggested Citation

  • Hai Shu & Xiao Wang & Hongtu Zhu, 2020. "D-CCA: A Decomposition-Based Canonical Correlation Analysis for High-Dimensional Datasets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 292-306, January.
  • Handle: RePEc:taf:jnlasa:v:115:y:2020:i:529:p:292-306
    DOI: 10.1080/01621459.2018.1543599
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2018.1543599
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2018.1543599?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Wenjia & Zhou, Yi-Hui, 2021. "Eigenvector-based sparse canonical correlation analysis: Fast computation for estimation of multiple canonical vectors," Journal of Multivariate Analysis, Elsevier, vol. 185(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:115:y:2020:i:529:p:292-306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.