IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v115y2020i529p241-253.html
   My bibliography  Save this article

Nonparametric Imputation by Data Depth

Author

Listed:
  • Pavlo Mozharovskyi
  • Julie Josse
  • François Husson

Abstract

We present single imputation method for missing values which borrows the idea of data depth—a measure of centrality defined for an arbitrary point of a space with respect to a probability distribution or data cloud. This consists in iterative maximization of the depth of each observation with missing values, and can be employed with any properly defined statistical depth function. For each single iteration, imputation reverts to optimization of quadratic, linear, or quasiconcave functions that are solved analytically by linear programming or the Nelder–Mead method. As it accounts for the underlying data topology, the procedure is distribution free, allows imputation close to the data geometry, can make prediction in situations where local imputation (k-nearest neighbors, random forest) cannot, and has attractive robustness and asymptotic properties under elliptical symmetry. It is shown that a special case—when using the Mahalanobis depth—has direct connection to well-known methods for the multivariate normal model, such as iterated regression and regularized PCA. The methodology is extended to multiple imputation for data stemming from an elliptically symmetric distribution. Simulation and real data studies show good results compared with existing popular alternatives. The method has been implemented as an R-package. Supplementary materials for the article are available online.

Suggested Citation

  • Pavlo Mozharovskyi & Julie Josse & François Husson, 2020. "Nonparametric Imputation by Data Depth," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 241-253, January.
  • Handle: RePEc:taf:jnlasa:v:115:y:2020:i:529:p:241-253
    DOI: 10.1080/01621459.2018.1543123
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2018.1543123
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2018.1543123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Elías & Raúl Jiménez & Han Lin Shang, 2023. "Depth-based reconstruction method for incomplete functional data," Computational Statistics, Springer, vol. 38(3), pages 1507-1535, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:115:y:2020:i:529:p:241-253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.