Author
Listed:
- Jonathan P. Williams
- Curtis B. Storlie
- Terry M. Therneau
- Clifford R. Jack Jr
- Jan Hannig
Abstract
People are living longer than ever before, and with this arises new complications and challenges for humanity. Among the most pressing of these challenges is of understanding the role of aging in the development of dementia. This article is motivated by the Mayo Clinic Study of Aging data for 4742 subjects since 2004, and how it can be used to draw inference on the role of aging in the development of dementia. We construct a hidden Markov model (HMM) to represent progression of dementia from states associated with the buildup of amyloid plaque in the brain, and the loss of cortical thickness. A hierarchical Bayesian approach is taken to estimate the parameters of the HMM with a truly time-inhomogeneous infinitesimal generator matrix, and response functions of the continuous-valued biomarker measurements are cut-point agnostic. A Bayesian approach with these features could be useful in many disease progression models. Additionally, an approach is illustrated for correcting a common bias in delayed enrollment studies, in which some or all subjects are not observed at baseline. Standard software is incapable of accounting for this critical feature, so code to perform the estimation of the model described below is made available online. Code submitted with this article was checked by an Associate Editor for Reproducibility and is available as an online supplement.
Suggested Citation
Jonathan P. Williams & Curtis B. Storlie & Terry M. Therneau & Clifford R. Jack Jr & Jan Hannig, 2020.
"A Bayesian Approach to Multistate Hidden Markov Models: Application to Dementia Progression,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 16-31, January.
Handle:
RePEc:taf:jnlasa:v:115:y:2020:i:529:p:16-31
DOI: 10.1080/01621459.2019.1594831
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:115:y:2020:i:529:p:16-31. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.