IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v114y2019i528p1574-1596.html
   My bibliography  Save this article

The Blessings of Multiple Causes

Author

Listed:
  • Yixin Wang
  • David M. Blei

Abstract

Causal inference from observational data is a vital problem, but it comes with strong assumptions. Most methods assume that we observe all confounders, variables that affect both the causal variables and the outcome variables. This assumption is standard but it is also untestable. In this article, we develop the deconfounder, a way to do causal inference with weaker assumptions than the traditional methods require. The deconfounder is designed for problems of multiple causal inference: scientific studies that involve multiple causes whose effects are simultaneously of interest. Specifically, the deconfounder combines unsupervised machine learning and predictive model checking to use the dependencies among multiple causes as indirect evidence for some of the unobserved confounders. We develop the deconfounder algorithm, prove that it is unbiased, and show that it requires weaker assumptions than traditional causal inference. We analyze its performance in three types of studies: semi-simulated data around smoking and lung cancer, semi-simulated data around genome-wide association studies, and a real dataset about actors and movie revenue. The deconfounder is an effective approach to estimating causal effects in problems of multiple causal inference. Supplementary materials for this article are available online.

Suggested Citation

  • Yixin Wang & David M. Blei, 2019. "The Blessings of Multiple Causes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(528), pages 1574-1596, October.
  • Handle: RePEc:taf:jnlasa:v:114:y:2019:i:528:p:1574-1596
    DOI: 10.1080/01621459.2019.1686987
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2019.1686987
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2019.1686987?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng Zheng & Lei Liu, 2022. "Quantifying direct and indirect effect for longitudinal mediator and survival outcome using joint modeling approach," Biometrics, The International Biometric Society, vol. 78(3), pages 1233-1243, September.
    2. Tsionas, Mike G. & Patel, Pankaj C., 2023. "Tinkering or orchestrating? The value of country-level asset management capability and entrepreneurship outcomes," International Journal of Production Economics, Elsevier, vol. 255(C).
    3. Bernard Koch & Tim Sainburg & Pablo Geraldo & Song Jiang & Yizhou Sun & Jacob Gates Foster, 2021. "A Primer on Deep Learning for Causal Inference," Papers 2110.04442, arXiv.org, revised Nov 2023.
    4. Koch, Bernard & Sainburg, Tim & Geraldo, Pablo & JIANG, SONG & Sun, Yizhou & Foster, Jacob G., 2021. "Deep Learning of Potential Outcomes," SocArXiv aeszf, Center for Open Science.
    5. Zaid Tashman & Christoph Gorder & Sonali Parthasarathy & Mohamad M. Nasr-Azadani & Rachel Webre, 2020. "Anomaly Detection System for Water Networks in Northern Ethiopia Using Bayesian Inference," Sustainability, MDPI, vol. 12(7), pages 1-16, April.
    6. Pengzhou Wu & Kenji Fukumizu, 2021. "Towards Principled Causal Effect Estimation by Deep Identifiable Models," Papers 2109.15062, arXiv.org, revised Nov 2021.
    7. Fukuyama, Hirofumi & Tsionas, Mike & Tan, Yong, 2023. "Dynamic network data envelopment analysis with a sequential structure and behavioural-causal analysis: Application to the Chinese banking industry," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1360-1373.
    8. Christian Stetter & Philipp Mennig & Johannes Sauer, 2022. "Using Machine Learning to Identify Heterogeneous Impacts of Agri-Environment Schemes in the EU: A Case Study," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 49(4), pages 723-759.
    9. Chatterjee, Joyjit & Dethlefs, Nina, 2021. "Scientometric review of artificial intelligence for operations & maintenance of wind turbines: The past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    10. Tsionas, Mike G., 2022. "Convex non-parametric least squares, causal structures and productivity," European Journal of Operational Research, Elsevier, vol. 303(1), pages 370-387.
    11. Zhang, Xiaoke & Xue, Wu & Wang, Qiyue, 2021. "Covariate balancing functional propensity score for functional treatments in cross-sectional observational studies," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    12. Fukuyama, Hirofumi & Tsionas, Mike & Tan, Yong, 2024. "The impacts of innovation and trade openness on bank market power: The proposal of a minimum distance cost function approach and a causal structure analysis," European Journal of Operational Research, Elsevier, vol. 312(3), pages 1178-1194.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:114:y:2019:i:528:p:1574-1596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.