IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v114y2019i527p975-990.html
   My bibliography  Save this article

A Geometric Perspective on the Power of Principal Component Association Tests in Multiple Phenotype Studies

Author

Listed:
  • Zhonghua Liu
  • Xihong Lin

Abstract

Joint analysis of multiple phenotypes can increase statistical power in genetic association studies. Principal component analysis, as a popular dimension reduction method, especially when the number of phenotypes is high dimensional, has been proposed to analyze multiple correlated phenotypes. It has been empirically observed that the first PC, which summarizes the largest amount of variance, can be less powerful than higher-order PCs and other commonly used methods in detecting genetic association signals. In this article, we investigate the properties of PCA-based multiple phenotype analysis from a geometric perspective by introducing a novel concept called principal angle. A particular PC is powerful if its principal angle is 0° and is powerless if its principal angle is 90° . Without prior knowledge about the true principal angle, each PC can be powerless. We propose linear, nonlinear, and data-adaptive omnibus tests by combining PCs. We demonstrate that the Wald test is a special quadratic PC-based test. We show that the omnibus PC test is robust and powerful in a wide range of scenarios. We study the properties of the proposed methods using power analysis and eigen-analysis. The subtle differences and close connections between these combined PC methods are illustrated graphically in terms of their rejection boundaries. Our proposed tests have convex acceptance regions and hence are admissible. The p-values for the proposed tests can be efficiently calculated analytically and the proposed tests have been implemented in a publicly available R package MPAT. We conduct simulation studies in both low- and high-dimensional settings with various signal vectors and correlation structures. We apply the proposed tests to the joint analysis of metabolic syndrome-related phenotypes with datasets collected from four international consortia to demonstrate the effectiveness of the proposed combined PC testing procedures. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.

Suggested Citation

  • Zhonghua Liu & Xihong Lin, 2019. "A Geometric Perspective on the Power of Principal Component Association Tests in Multiple Phenotype Studies," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 975-990, July.
  • Handle: RePEc:taf:jnlasa:v:114:y:2019:i:527:p:975-990
    DOI: 10.1080/01621459.2018.1513363
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2018.1513363
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2018.1513363?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chun Chieh Fan & Robert Loughnan & Carolina Makowski & Diliana Pecheva & Chi-Hua Chen & Donald J. Hagler & Wesley K. Thompson & Nadine Parker & Dennis van der Meer & Oleksandr Frei & Ole A. Andreassen, 2022. "Multivariate genome-wide association study on tissue-sensitive diffusion metrics highlights pathways that shape the human brain," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Yang, Chiao-Yu & Lei, Lihua & Ho, Nhat & Fithian, William, 2022. "BONuS: Multiple Multivariate Testing with a Data-Adaptive Test Statistic," Research Papers 4031, Stanford University, Graduate School of Business.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:114:y:2019:i:527:p:975-990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.