IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v114y2019i527p1394-1403.html
   My bibliography  Save this article

MCMC for Imbalanced Categorical Data

Author

Listed:
  • James E. Johndrow
  • Aaron Smith
  • Natesh Pillai
  • David B. Dunson

Abstract

Many modern applications collect highly imbalanced categorical data, with some categories relatively rare. Bayesian hierarchical models combat data sparsity by borrowing information, while also quantifying uncertainty. However, posterior computation presents a fundamental barrier to routine use; a single class of algorithms does not work well in all settings and practitioners waste time trying different types of Markov chain Monte Carlo (MCMC) approaches. This article was motivated by an application to quantitative advertising in which we encountered extremely poor computational performance for data augmentation MCMC algorithms but obtained excellent performance for adaptive Metropolis. To obtain a deeper understanding of this behavior, we derive theoretical results on the computational complexity of commonly used data augmentation algorithms and the Random Walk Metropolis algorithm for highly imbalanced binary data. In this regime, our results show computational complexity of Metropolis is logarithmic in sample size, while data augmentation is polynomial in sample size. The root cause of this poor performance of data augmentation is a discrepancy between the rates at which the target density and MCMC step sizes concentrate. Our methods also show that MCMC algorithms that exhibit a similar discrepancy will fail in large samples—a result with substantial practical impact. Supplementary materials for this article are available online.

Suggested Citation

  • James E. Johndrow & Aaron Smith & Natesh Pillai & David B. Dunson, 2019. "MCMC for Imbalanced Categorical Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1394-1403, July.
  • Handle: RePEc:taf:jnlasa:v:114:y:2019:i:527:p:1394-1403
    DOI: 10.1080/01621459.2018.1505626
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2018.1505626
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2018.1505626?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kawakubo, Yuki & Kobayashi, Genya, 2023. "Small area estimation of general finite-population parameters based on grouped data," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    2. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    3. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    4. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    5. Gael M. Martin & David T. Frazier & Christian P. Robert, 2021. "Approximating Bayes in the 21st Century," Monash Econometrics and Business Statistics Working Papers 24/21, Monash University, Department of Econometrics and Business Statistics.
    6. Zhongwei Zhang & Reinaldo B. Arellano‐Valle & Marc G. Genton & Raphaël Huser, 2023. "Tractable Bayes of skew‐elliptical link models for correlated binary data," Biometrics, The International Biometric Society, vol. 79(3), pages 1788-1800, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:114:y:2019:i:527:p:1394-1403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.