IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v114y2019i527p1038-1049.html
   My bibliography  Save this article

Estimating and Testing Vaccine Sieve Effects Using Machine Learning

Author

Listed:
  • David Benkeser
  • Peter B. Gilbert
  • Marco Carone

Abstract

When available, vaccines are an effective means of disease prevention. Unfortunately, efficacious vaccines have not yet been developed for several major infectious diseases, including HIV and malaria. Vaccine sieve analysis studies whether and how the efficacy of a vaccine varies with the genetics of the pathogen of interest, which can guide subsequent vaccine development and deployment. In sieve analyses, the effect of the vaccine on the cumulative incidence corresponding to each of several possible genotypes is often assessed within a competing risks framework. In the context of clinical trials, the estimators employed in these analyses generally do not account for covariates, even though the latter may be predictive of the study endpoint or censoring. Motivated by two recent preventive vaccine efficacy trials for HIV and malaria, we develop new methodology for vaccine sieve analysis. Our approach offers improved validity and efficiency relative to existing approaches by allowing covariate adjustment through ensemble machine learning. We derive results that indicate how to perform statistical inference using our estimators. Our analysis of the HIV and malaria trials shows markedly increased precision—up to doubled efficiency in both trials—under more plausible assumptions compared with standard methodology. Our findings provide greater evidence for vaccine sieve effects in both trials. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.

Suggested Citation

  • David Benkeser & Peter B. Gilbert & Marco Carone, 2019. "Estimating and Testing Vaccine Sieve Effects Using Machine Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1038-1049, July.
  • Handle: RePEc:taf:jnlasa:v:114:y:2019:i:527:p:1038-1049
    DOI: 10.1080/01621459.2018.1529594
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2018.1529594
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2018.1529594?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erin E. Gabriel & Michael C. Sachs & Dean A. Follmann & Therese M‐L. Andersson, 2020. "A unified evaluation of differential vaccine efficacy," Biometrics, The International Biometric Society, vol. 76(4), pages 1053-1063, December.
    2. David Benkeser & Iván Díaz & Alex Luedtke & Jodi Segal & Daniel Scharfstein & Michael Rosenblum, 2021. "Improving precision and power in randomized trials for COVID‐19 treatments using covariate adjustment, for binary, ordinal, and time‐to‐event outcomes," Biometrics, The International Biometric Society, vol. 77(4), pages 1467-1481, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:114:y:2019:i:527:p:1038-1049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.