IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v114y2019i526p820-830.html
   My bibliography  Save this article

Interpretable High-Dimensional Inference Via Score Projection With an Application in Neuroimaging

Author

Listed:
  • Simon N. Vandekar
  • Philip T. Reiss
  • Russell T. Shinohara

Abstract

In the fields of neuroimaging and genetics, a key goal is testing the association of a single outcome with a very high-dimensional imaging or genetic variable. Often, summary measures of the high-dimensional variable are created to sequentially test and localize the association with the outcome. In some cases, the associations between the outcome and summary measures are significant, but subsequent tests used to localize differences are underpowered and do not identify regions associated with the outcome. Here, we propose a generalization of Rao’s score test based on projecting the score statistic onto a linear subspace of a high-dimensional parameter space. The approach provides a way to localize signal in the high-dimensional space by projecting the scores to the subspace where the score test was performed. This allows for inference in the high-dimensional space to be performed on the same degrees of freedom as the score test, effectively reducing the number of comparisons. Simulation results demonstrate the test has competitive power relative to others commonly used. We illustrate the method by analyzing a subset of the Alzheimer’s Disease Neuroimaging Initiative dataset. Results suggest cortical thinning of the frontal and temporal lobes may be a useful biological marker of Alzheimer’s disease risk. Supplementary materials for this article are available online.

Suggested Citation

  • Simon N. Vandekar & Philip T. Reiss & Russell T. Shinohara, 2019. "Interpretable High-Dimensional Inference Via Score Projection With an Application in Neuroimaging," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 820-830, April.
  • Handle: RePEc:taf:jnlasa:v:114:y:2019:i:526:p:820-830
    DOI: 10.1080/01621459.2018.1448826
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2018.1448826
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2018.1448826?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingxuan Luo & Lili Yue & Gaorong Li, 2023. "Overview of High-Dimensional Measurement Error Regression Models," Mathematics, MDPI, vol. 11(14), pages 1-22, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:114:y:2019:i:526:p:820-830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.