IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v114y2019i525p419-433.html
   My bibliography  Save this article

Group SLOPE – Adaptive Selection of Groups of Predictors

Author

Listed:
  • Damian Brzyski
  • Alexej Gossmann
  • Weijie Su
  • Małgorzata Bogdan

Abstract

Sorted L-One Penalized Estimation (SLOPE; Bogdan et al. 2013, 2015) is a relatively new convex optimization procedure, which allows for adaptive selection of regressors under sparse high-dimensional designs. Here, we extend the idea of SLOPE to deal with the situation when one aims at selecting whole groups of explanatory variables instead of single regressors. Such groups can be formed by clustering strongly correlated predictors or groups of dummy variables corresponding to different levels of the same qualitative predictor. We formulate the respective convex optimization problem, group SLOPE (gSLOPE), and propose an efficient algorithm for its solution. We also define a notion of the group false discovery rate (gFDR) and provide a choice of the sequence of tuning parameters for gSLOPE so that gFDR is provably controlled at a prespecified level if the groups of variables are orthogonal to each other. Moreover, we prove that the resulting procedure adapts to unknown sparsity and is asymptotically minimax with respect to the estimation of the proportions of variance of the response variable explained by regressors from different groups. We also provide a method for the choice of the regularizing sequence when variables in different groups are not orthogonal but statistically independent and illustrate its good properties with computer simulations. Finally, we illustrate the advantages of gSLOPE in the context of Genome Wide Association Studies. R package grpSLOPE with an implementation of our method is available on The Comprehensive R Archive Network.

Suggested Citation

  • Damian Brzyski & Alexej Gossmann & Weijie Su & Małgorzata Bogdan, 2019. "Group SLOPE – Adaptive Selection of Groups of Predictors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 419-433, January.
  • Handle: RePEc:taf:jnlasa:v:114:y:2019:i:525:p:419-433
    DOI: 10.1080/01621459.2017.1411269
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2017.1411269
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2017.1411269?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Yang & Luo, Ziyan & Kong, Lingchen, 2024. "Low-rank tensor regression for selection of grouped variables," Journal of Multivariate Analysis, Elsevier, vol. 203(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:114:y:2019:i:525:p:419-433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.