IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v114y2019i525p370-383.html
   My bibliography  Save this article

Censoring Unbiased Regression Trees and Ensembles

Author

Listed:
  • Jon Arni Steingrimsson
  • Liqun Diao
  • Robert L. Strawderman

Abstract

This article proposes a novel paradigm for building regression trees and ensemble learning in survival analysis. Generalizations of the classification and regression trees (CART) and random forests (RF) algorithms for general loss functions, and in the latter case more general bootstrap procedures, are both introduced. These results, in combination with an extension of the theory of censoring unbiased transformations (CUTs) applicable to loss functions, underpin the development of two new classes of algorithms for constructing survival trees and survival forests: censoring unbiased regression trees and censoring unbiased regression ensembles. For a certain “doubly robust” CUT of squared error loss, we further show how these new algorithms can be implemented using existing software (e.g., CART, RF). Comparisons of these methods to existing ensemble procedures for predicting survival probabilities are provided in both simulated settings and through applications to four datasets. It is shown that these new methods either improve upon, or remain competitive with, existing implementations of random survival forests, conditional inference forests, and recursively imputed survival trees.

Suggested Citation

  • Jon Arni Steingrimsson & Liqun Diao & Robert L. Strawderman, 2019. "Censoring Unbiased Regression Trees and Ensembles," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 370-383, January.
  • Handle: RePEc:taf:jnlasa:v:114:y:2019:i:525:p:370-383
    DOI: 10.1080/01621459.2017.1407775
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2017.1407775
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2017.1407775?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yifei Sun & Sy Han Chiou & Mei‐Cheng Wang, 2020. "ROC‐guided survival trees and ensembles," Biometrics, The International Biometric Society, vol. 76(4), pages 1177-1189, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:114:y:2019:i:525:p:370-383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.