IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v114y2019i525p245-258.html
   My bibliography  Save this article

Fisher Exact Scanning for Dependency

Author

Listed:
  • Li Ma
  • Jialiang Mao

Abstract

We introduce a method—called Fisher exact scanning (FES)—for testing and identifying variable dependency that generalizes Fisher’s exact test on 2 × 2 contingency tables to R × C contingency tables and continuous sample spaces. FES proceeds through scanning over the sample space using windows in the form of 2 × 2 tables of various sizes, and on each window completing a Fisher’s exact test. Based on a factorization of Fisher’s multivariate hypergeometric (MHG) likelihood into the product of the univariate hypergeometric likelihoods, we show that there exists a coarse-to-fine, sequential generative representation for the MHG model in the form of a Bayesian network, which in turn implies the mutual independence (up to deviation due to discreteness) among the Fisher’s exact tests completed under FES. This allows an exact characterization of the joint null distribution of the p-values and gives rise to an effective inference recipe through simple multiple testing procedures such as Šidák and Bonferroni corrections, eliminating the need for resampling. In addition, FES can characterize dependency through reporting significant windows after multiple testing control. The computational complexity of FES is approximately linear in the sample size, which along with the avoidance of resampling makes it ideal for analyzing massive datasets. We use extensive numerical studies to illustrate the work of FES and compare it to several state-of-the-art methods for testing dependency in both statistical and computational performance. Finally, we apply FES to analyzing a microbiome dataset and further investigate its relationship with other popular dependency metrics in that context. Supplementary materials for this article are available online.

Suggested Citation

  • Li Ma & Jialiang Mao, 2019. "Fisher Exact Scanning for Dependency," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 245-258, January.
  • Handle: RePEc:taf:jnlasa:v:114:y:2019:i:525:p:245-258
    DOI: 10.1080/01621459.2017.1397522
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2017.1397522
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2017.1397522?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S Gorsky & L Ma, 2022. "Rejoinder: ‘Multi-scale Fisher’s independence test for multivariate dependence’ [Discussion of ‘Multi-scale Fisher’s independence test for multivariate dependence’]," Biometrika, Biometrika Trust, vol. 109(3), pages 605-609.
    2. S Gorsky & L Ma, 2022. "Multi-scale Fisher’s independence test for multivariate dependence [A simple measure of conditional dependence]," Biometrika, Biometrika Trust, vol. 109(3), pages 569-587.
    3. Tomáš Beňuška & Pavel Nečas, 2021. "On societal security of the state: applying a perspective of sustainability to immigration," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 9(2), pages 473-487, December.
    4. David Todem & Wei‐Wen Hsu & KyungMann Kim, 2023. "Nonparametric scanning tests of homogeneity for hierarchical models with continuous covariates," Biometrics, The International Biometric Society, vol. 79(3), pages 2063-2075, September.
    5. Ma, Zichen & Hanson, Timothy E., 2020. "Bayesian nonparametric test for independence between random vectors," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:114:y:2019:i:525:p:245-258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.