IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v114y2019i525p198-210.html
   My bibliography  Save this article

Matrix Completion With Covariate Information

Author

Listed:
  • Xiaojun Mao
  • Song Xi Chen
  • Raymond K. W. Wong

Abstract

This article investigates the problem of matrix completion from the corrupted data, when the additional covariates are available. Despite being seldomly considered in the matrix completion literature, these covariates often provide valuable information for completing the unobserved entries of the high-dimensional target matrix A0. Given a covariate matrix X with its rows representing the row covariates of A0, we consider a column-space-decomposition model A0 = Xβ0 + B0, where β0 is a coefficient matrix and B0 is a low-rank matrix orthogonal to X in terms of column space. This model facilitates a clear separation between the interpretable covariate effects (Xβ0) and the flexible hidden factor effects (B0). Besides, our work allows the probabilities of observation to depend on the covariate matrix, and hence a missing-at-random mechanism is permitted. We propose a novel penalized estimator for A0 by utilizing both Frobenius-norm and nuclear-norm regularizations with an efficient and scalable algorithm. Asymptotic convergence rates of the proposed estimators are studied. The empirical performance of the proposed methodology is illustrated via both numerical experiments and a real data application.

Suggested Citation

  • Xiaojun Mao & Song Xi Chen & Raymond K. W. Wong, 2019. "Matrix Completion With Covariate Information," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 198-210, January.
  • Handle: RePEc:taf:jnlasa:v:114:y:2019:i:525:p:198-210
    DOI: 10.1080/01621459.2017.1389740
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2017.1389740
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2017.1389740?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Tolentino Herrera & José Gerardo De la Vega Meneses, 2020. "Responsabilidad Social Corporativa como la clave para las empresas exitosas," Revista de Investigación en Ciencias Contables y Administrativas, Universidad Michoacana de San Nicolás de Hidalgo, Facultad de Contaduría y Ciencias Administrativas, vol. 6(1), pages 116-129, December.
    2. Xiaojun Mao & Zhonglei Wang & Shu Yang, 2023. "Matrix completion under complex survey sampling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(3), pages 463-492, June.
    3. Andrea Tolentino Herrera & José Gerardo De la Vega Meneses, 2020. "Responsabilidad Social Corporativa como la clave para las empresas exitosas," Revista de Investigación en Ciencias Contables y Administrativas, Universidad Michoacana de San Nicolás de Hidalgo, Facultad de Contaduría y Ciencias Administrativas, vol. 6(1), pages 116-129, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:114:y:2019:i:525:p:198-210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.