IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v113y2018i524p1656-1668.html
   My bibliography  Save this article

Bayesian Estimation and Comparison of Moment Condition Models

Author

Listed:
  • Siddhartha Chib
  • Minchul Shin
  • Anna Simoni

Abstract

In this article, we develop a Bayesian semiparametric analysis of moment condition models by casting the problem within the exponentially tilted empirical likelihood (ETEL) framework. We use this framework to develop a fully Bayesian analysis of correctly and misspecified moment condition models. We show that even under misspecification, the Bayesian ETEL posterior distribution satisfies the Bernstein–von Mises (BvM) theorem. We also develop a unified approach based on marginal likelihoods and Bayes factors for comparing different moment-restricted models and for discarding any misspecified moment restrictions. Computation of the marginal likelihoods is by the method of Chib (1995) as extended to Metropolis–Hastings samplers in Chib and Jeliazkov in 2001. We establish the model selection consistency of the marginal likelihood and show that the marginal likelihood favors the model with the minimum number of parameters and the maximum number of valid moment restrictions. When the models are misspecified, the marginal likelihood model selection procedure selects the model that is closer to the (unknown) true data-generating process in terms of the Kullback–Leibler divergence. The ideas and results in this article broaden the theoretical underpinning and value of the Bayesian ETEL framework with many practical applications. The discussion is illuminated through several examples. Supplementary materials for this article are available online.

Suggested Citation

  • Siddhartha Chib & Minchul Shin & Anna Simoni, 2018. "Bayesian Estimation and Comparison of Moment Condition Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1656-1668, October.
  • Handle: RePEc:taf:jnlasa:v:113:y:2018:i:524:p:1656-1668
    DOI: 10.1080/01621459.2017.1358172
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2017.1358172
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2017.1358172?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siddhartha Chib & Minchul Shin & Anna Simoni, 2022. "Bayesian estimation and comparison of conditional moment models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 740-764, July.
    2. Bedoui, Adel & Lazar, Nicole A., 2020. "Bayesian empirical likelihood for ridge and lasso regressions," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    3. Luo, Yu & Graham, Daniel J. & McCoy, Emma J., 2023. "Semiparametric Bayesian doubly robust causal estimation," LSE Research Online Documents on Economics 117944, London School of Economics and Political Science, LSE Library.
    4. Gallant, A. Ronald & Hong, Han & Leung, Michael P. & Li, Jessie, 2022. "Constrained estimation using penalization and MCMC," Journal of Econometrics, Elsevier, vol. 228(1), pages 85-106.
    5. Zhichao Liu & Catherine Forbes & Heather Anderson, 2017. "Robust Bayesian exponentially tilted empirical likelihood method," Monash Econometrics and Business Statistics Working Papers 21/17, Monash University, Department of Econometrics and Business Statistics.
    6. Gyuhyeong Goh & Jisang Yu, 2022. "Causal inference with some invalid instrumental variables: A quasi‐Bayesian approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(6), pages 1432-1451, December.
    7. Arnab Kumar Maity & Sanjib Basu & Santu Ghosh, 2021. "Bayesian criterion‐based variable selection," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 835-857, August.
    8. Petrova, Katerina, 2022. "Asymptotically valid Bayesian inference in the presence of distributional misspecification in VAR models," Journal of Econometrics, Elsevier, vol. 230(1), pages 154-182.
    9. Breitenlechner, Max & Georgiadis, Georgios & Schumann, Ben, 2022. "What goes around comes around: How large are spillbacks from US monetary policy?," Journal of Monetary Economics, Elsevier, vol. 131(C), pages 45-60.
    10. Chung, Ray S.W. & So, Mike K.P. & Chu, Amanda M.Y. & Chan, Thomas W.C., 2020. "Regularization of Bayesian quasi-likelihoods constructed from complex estimating functions," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    11. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    12. Rong Tang & Yun Yang, 2022. "Bayesian inference for risk minimization via exponentially tilted empirical likelihood," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1257-1286, September.
    13. Gael M. Martin & David T. Frazier & Christian P. Robert, 2021. "Approximating Bayes in the 21st Century," Monash Econometrics and Business Statistics Working Papers 24/21, Monash University, Department of Econometrics and Business Statistics.
    14. Sweata Sen & Damitri Kundu & Kiranmoy Das, 2023. "Variable selection for categorical response: a comparative study," Computational Statistics, Springer, vol. 38(2), pages 809-826, June.
    15. Kline, Brendan, 2024. "Classical p-values and the Bayesian posterior probability that the hypothesis is approximately true," Journal of Econometrics, Elsevier, vol. 240(1).
    16. Qiao, Zhuo & Wang, Yan & Lam, Keith S.K., 2022. "New evidence on Bayesian tests of global factor pricing models," Journal of Empirical Finance, Elsevier, vol. 68(C), pages 160-172.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:113:y:2018:i:524:p:1656-1668. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.