IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v113y2018i524p1476-1489.html
   My bibliography  Save this article

Modeling Random Effects Using Global–Local Shrinkage Priors in Small Area Estimation

Author

Listed:
  • Xueying Tang
  • Malay Ghosh
  • Neung Soo Ha
  • Joseph Sedransk

Abstract

Small area estimation is becoming increasingly popular for survey statisticians. One very important program is Small Area Income and Poverty Estimation undertaken by the United States Bureau of the Census, which aims at providing estimates related to income and poverty based on American Community Survey data at the state level and even at lower levels of geography. This article introduces global–local (GL) shrinkage priors for random effects in small area estimation to capture wide area level variation when the number of small areas is very large. These priors employ two levels of parameters, global and local parameters, to express variances of area-specific random effects so that both small and large random effects can be captured properly. We show via simulations and data analysis that use of the GL priors can improve estimation results in most cases. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.

Suggested Citation

  • Xueying Tang & Malay Ghosh & Neung Soo Ha & Joseph Sedransk, 2018. "Modeling Random Effects Using Global–Local Shrinkage Priors in Small Area Estimation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1476-1489, October.
  • Handle: RePEc:taf:jnlasa:v:113:y:2018:i:524:p:1476-1489
    DOI: 10.1080/01621459.2017.1419135
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2017.1419135
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2017.1419135?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agne Bikauskaite & Isabel Molina & Domingo Morales, 2022. "Multivariate mixture model for small area estimation of poverty indicators," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 724-755, December.
    2. Jan van den Brakel & Martijn Souren & Sabine Krieg, 2022. "Estimating monthly labour force figures during the COVID‐19 pandemic in the Netherlands," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1560-1583, October.
    3. Tamal Ghosh & Malay Ghosh & Jerry J. Maples & Xueying Tang, 2022. "Multivariate Global-Local Priors for Small Area Estimation," Stats, MDPI, vol. 5(3), pages 1-16, July.
    4. Harm Jan Boonstra & Jan van den Brakel & Sumonkanti Das, 2021. "Multilevel time series modelling of mobility trends in the Netherlands for small domains," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 985-1007, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:113:y:2018:i:524:p:1476-1489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.