IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v113y2018i523p1362-1371.html
   My bibliography  Save this article

On the Null Distribution of Bayes Factors in Linear Regression

Author

Listed:
  • Quan Zhou
  • Yongtao Guan

Abstract

We show that under the null, the 2log(Bayesfactor)$2 \log (\text{Bayes factor})$ is asymptotically distributed as a weighted sum of chi-squared random variables with a shifted mean. This claim holds for Bayesian multi-linear regression with a family of conjugate priors, namely, the normal-inverse-gamma prior, the g-prior, and the normal prior. Our results have three immediate impacts. First, we can compute analytically a p-value associated with a Bayes factor without the need of permutation. We provide a software package that can evaluate the p-value associated with Bayes factor efficiently and accurately. Second, the null distribution is illuminating to some intrinsic properties of Bayes factor, namely, how Bayes factor quantitatively depends on prior and the genesis of Bartlett’s paradox. Third, enlightened by the null distribution of Bayes factor, we formulate a novel scaled Bayes factor that depends less on the prior and is immune to Bartlett’s paradox. When two tests have an identical p-value, the test with a larger power tends to have a larger scaled Bayes factor, a desirable property that is missing for the (unscaled) Bayes factor. Supplementary materials for this article are available online.

Suggested Citation

  • Quan Zhou & Yongtao Guan, 2018. "On the Null Distribution of Bayes Factors in Linear Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1362-1371, July.
  • Handle: RePEc:taf:jnlasa:v:113:y:2018:i:523:p:1362-1371
    DOI: 10.1080/01621459.2017.1328361
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2017.1328361
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2017.1328361?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Galharret, Jean-Michel & Philippe, Anne, 2023. "Bayesian analysis for mediation and moderation using g−priors," Econometrics and Statistics, Elsevier, vol. 27(C), pages 161-172.
    2. Rui Wang & Xingzhong Xu, 2021. "A Bayesian-motivated test for high-dimensional linear regression models with fixed design matrix," Statistical Papers, Springer, vol. 62(4), pages 1821-1852, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:113:y:2018:i:523:p:1362-1371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.